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" 1. Make a labeled sketch showing the ball in both its injtial
and final positions (Figure

2. No external forces act on the system, so the work done by W, =AE_ _ +
external forces is zero, and no slipping occurs, s0 no energy - o
is dissipated by kinetic friction. Thus, mechanical energycijs 0= e + 0
constant:

AE

therm

3. Apply conservation of mechanical energy with U, = Dand U+ K, =U + K

K; = 0. Write the total initial kinetic energy K, in terms of
the speed _ and the angular speed w,:

4. Substitute from w, = Uemi/Rand [ = $MR? and solve Mgh = lMz)2
for Ju: ° 2
2

emi

2\5

Mgh +0 =0+ 1Mo +11 w?

1 2 Uzmi
+ = ("‘MRz) = lMU

vt
] = cm? = -
S0 11 10¢ 0.2854m 29cm

%)
Sketch a free-body diagram of the ball (Figurt?S“-ﬁﬁ).”ngr_e,_a_ss_unﬁng that friction

between the ball and the table is negligible, so do not include this frictional force:

The torque about the horizontal axis through the center of the T=Fd
ball (and out of the page) equals F times d:
Apply Newton’s second law for a system and Newton's second F=pu_ and
law for rotational motion about the center of the balk
The nonship condition relates ¢ and o a. = Ra

) : F Fd
Substitute from steps 2 and 3 into step 4: e RI_

=1

FIGURE S8-36

. I ImRr?
Find the moment of inertia from Table 9-1 and solve for d: d=-2 =2 =|2r
mR  mR 5
HApply Newton's second law for a systern: in component form for the ZF =ma,,.
! x axis: mgsing — f, =ma_,
: 2. Apply Newton's second law for rotational motion about a horizontal ~ Zr, = [ o

b axis passing through the center of mass and perpendicular to 7.
The moment arms for the normal and gravitationat forces each equal
zero, so they do not exert torques on the ball:

3. Relate a_, and o using the nonstip condition: a_.

result for f, and the step-3 result for o, substitute for these quantities
in the step-2 result, and solve fora_: ©

= Re

FR+0+0=1a

ﬂcm

4, We now have three equations and three unknowns. Solve the step-1 (mgsing — ma IR = Icm?

gsing

Icm

+
mR?

mgsing  mgsing

5. Substitute the step-4 result into the step-1 result and solve for f: fi=mgsing —~ ma_ = mgsing — R
N cm +
+ B el
mR? I,
2 ] . . g Sil'l ¢ 5 .
6. For asolid sphere, I, = 3mR? (see Table 9-1). Substitute for I in the a = e = —7~g sin ¢
step-4 and step-5 results: T35
mig sin ¢ 2 .
s = —-"*""*1 " % = ;mgsm«ﬁ




(a} 1. Sketch a free-body diagram of the ball (FigurM

2. The net force on the ball is the force of kinetic friction f,,
which acts in the negative x direction. Apply Newton's
second law:

3. The acceleration is in the negative x direction and 2, = 0.
Find f, by first finding F : )
4. Find the acceleration using the step-2 and step-3 results:

5. Relate the linear velocity to the constant acceleration and the
time using a kinematic equation:

6. Find « by applying Newton's second law for rotational
motion to the ball. Compute the torques about the axis
through the center of mass. Note that the free-body diagram
has clockwise as positive:

7. Relate the angular velocity to the constant angular
acceleration and the time using a kinematic equation:

8. Solve for the time £ at which v_, = Rex

(5) The distance traveled while skidding is

SE\' = Macm.\'
_fk = Macrnx
E‘,Py = Macmy =0=F = Mg

so fi =k = mMg
_I‘LkMg = Mﬂcm.r = e = —HE

Uy = Vo T et =0y — 8t
Zr=1_u
MR + 0 + 0 = §MR%
s0 a= a1
2 R
5 &

&J=wu+at=0+at=-2'wﬁ—f

U = Ra
5 E
(UD - ,u.kgf) = R(ETt)
29, 2(5.0m/s
so t ¢ ( /9) =[18s

T g 7(0.080)(9.81 my/s?)

2o,

x =t tga ¢t = o)+ =(—p =
ot T 2%, N\ 7 g 3 18, Ting

_12_ BOmjs
" 49 (0.080)(9.81m/s?)

We assume that m, >m,, and so m, will accelerate down, n, will
accelerate up, and the pulley will accelerate clockwise. Call the

i
2
12 7 ]
|
|

49 g

direction of acceleration the positive direction for each object. The = -
masses will have the same acceleration since they are connected by a 2

cord. The rim of the pulley will have that same acceleration since the
= afr . From the free-body

cord is making it rotate, and so o,

diagrams for each object, we have the following.

ZF_‘,I =F, -mg=ma — F,=mg+ma

ZF‘, =m,g—F,=ma — F,=mg—-mua

Z'r«—nFﬁr—Fﬂrzfcr:If-
,

FT] FT')
+ v if"n Ii'm 1y
1y 1173 l
mg n,E

Substitute the expressions for the tensions into the torque equation, and solve for the acceleration.

FT:"“FTJ":IE - (ng-—mzfzz)i'f—(mlg+m§c‘z)r=1E -
r r

(mz —ml)

“= (m] +m2—I—I/r3)

8

If the moment of inertia is ignored, then from the torque equation we see that F;, = F, , and the

acceleration will be |a (m3 _ m‘)
= (m, +m,)

included will be smaller than if the moment of inertia is ignored.

==—2— 12 5| We see that the acceleration with the moment of inertia
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& L=L - lo=Io - I, =], —=1I
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(@) Consider the person and platform a system for an

The only force doing work in this system is gravity, so mechanical energy
will be conserved. The initial state of the system is the configuration with

. on the ground and all objects at rest. The final state of the system has

m, just reaching the ground, and all objects in motion. Call the zero level
of gravitational potential energy to be the ground level. Both masses will
have the same speed since they are connected by the rope. Assuming that
the rope does not slip on the pulley, the angular speed of the pulley is
related to the speed of the masses by w = v/ R. All objects have an initial
speed of 0.

E =E,

D
&

ity

bl

€ =~ - — ~ 3]

Hy

| 2 i 2 i 2 _1 2 | 3 3 2
Ty, +omyv; +la +mgy, T L8y, = my, +tymy; -lnz—Ia)f Mgy, F 1,8V,

il 1 2 V2
m,gh=1mv, +ymy, +—;—(§MR')(-—RL2J+ m, gh

\/ 2(m, —m,) gh \/2(26.5 kg-18.0 kg)(9.80m/s* )(3.00m)
v, = z —

(m +m,++m) (26.5 kg +18.0 kg +(1)7.50 kg)

torque to raise and/or lower the arms is internal o
arms will cause no change in the total angular mo
rotational inertia increases when the
increase in rotational inertia must be

mentum of the system.

=13.22m/s

gular momentum analysis. Since the force and
the system, the raising or lowering of the

However, the

arms are raised. Since angular momentum is conserved, an
accompanied by a decrease in angular velocity,

1.30rev/s
@,  0.80rev/s
The rotational inertia has increased by a factor of .

3 =1.6251 ~1.61,

The skater’s angular momentum is constant, since no external torques are applied to her.

@, 21 0.501ev/s
L=L - lo=lo - If=1i—~w=(4.6kg-m )—

@, 3.0rev/s

=0.77 kgem®

She accomplishes this by starting with her arms extended (initial angular velocity) and then

Ipuiling her arms in to the center of her body| (final angular velocity).

{a) Forthe daily rotation about its axis, treat the Earth as a uniform 3
frequency of one revolution per day.

Lduily =1 a)dnily = (';‘ MREz::nh ) @

daily

)

phere, with an angular

%(s_ox103“kg)(6-4><106m)2[(% radJ( 1day ﬂ;

1day /\ 86,4005

7.1x10% kg-mE/s

(6) For the yearly revolution a

9 I s =3

Ldai{y =1 Doty = (IWRsin- Ja)dnily

Earth

=(ﬁ.ox102“kg)(1.5x10”m)2[(_2’££?11_ (_1_‘:’&1_ N
365 day /\ 86,400 s

2.7x10% kgem? /s




. For our crude estimate, we model the hurricane as a rigid cylinder of air. Since the “cylinder” is
rigid, each part of it has the same angular velocity. The mass of the air is the product of the density
of air times the volume of the air cylinder.

M = pV = prR’h =(13kg/m’) ﬂ:(l.oo><105m)2 (4.0x10°m)=1.634x10"kg

(@) KE=110"=4(+MR*)(v,, [R) =+Mv.

edge

=1(1.634x 1014kg){(1201qn/h)(%ﬂ — 4539x10"°T ~

(b) L=Io=($MR*)(v,,[R)=+MR

edge

=1(1.634x10"kg}(1.00x 105m)[(120m/h){_!ﬂ.ﬂ 272310 kem? s

3.6km/h

~[3x10% kgem® /s

Angular momentum will be conserved in the Earth — asteroid system, since all forces and torques are
internal to the system. The initial angular velocity of the satellite, just before collision, can be found

from @ =V, o / R, . Assuming the asteroid becomes imbedded in the Earth at the surface,

asteroid
the Earth and the asteroid will have the same angular velocity after the collision. We model the
Earth as a uniform sphere, and the asteroid as a point mass.

‘Li = Lf - IE;mh a)Earth + Iasternid wnsu:roid = (IEmth + Iasteruid ) a)f
The moment of inertia of the satellite can be ignored relative to that of the Earth on the right side of
the above equation, and so the percent change in Earth’s angular velocity is found as follows.

) =] wm. — mﬁ_&) — I asteroid Pasieroia
asteroid ““astereid ™ * Earth™ f - 7
Earth Eanth @

i +7

@

Earth " Earth

Barth

Since the lost mass carries away no angular momentum, the angular momentum of the remaining
mass will be the same as the initial angular momentum.

L=L, — lLo=1I10

MR (8.00,,, )(696x10°m)’

T . _ ~1.601x10°
o I, :M,R} (025)(8.0M,,)(1.1x10°m)

®, =1.601x10° &, =1.601x10" ey =1.334x10° rev/day
d ' 12 day

~|1.3x10° rev/day =1.5x10° rev/s
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a) Conservation of angular momentum relates the L= L,

final speed to the initial speed and the initial v, =
and final radii;
50 v, =
22
B} 1. Apply Newton’s second law to relate T T=m—
to v and 7. Because the particle is being !
pulled in slowly, the acceleration Is virtually
the same as if the particle were moving in a
circle:
2. Obtain a relation between L, r, and v using L=%x 7
the definition of angular momentum. L = ymo cosf = rmm (i8] << 1, s0 cos B=1)

Because the particle is being pulled in
slowly, |B] << 1 (Figure 10-32a):

3. Eliminate v by solving the Part-(b} step-2 T = mv—_” = E(f{;) = %
result for v and then substitufing into the ! roAm m
Part-(b) step-1 resuls:

£) 1. Make 2 drawing of the particle as it moves dr = ~|dr|
closer to the hole (Figure 10-32b). When the
particle undergoes displacement €, its
distance r from the axis changes by dr.
Because r is decreasing, dr is negative.
Thus:
2. WritedW =T 4% in terms of T and dr: AW =T.4F = T cos ¢
Because  |dr| = decos ¢,
AW = Tldr| = ~T 4r
T tp32
3. Integrate from 7y to 7, after substituting for W= — f Tdr= - ;;—Sda
T from the Part-() step-3 result: T R
Lrf L2 r-2jn
__E,-, d?‘—-*;{:z} v
1] ko

(b)
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