(a) 1. Sketch the sled both in its initial
position and in its position after
moving the 5.0 m. Draw the x
axis in the direction of the

motion PGS

2. The work done by you on the sled
is F_Ax. This is the total work done
on the sled. The other two forces
each act perpendicular to the x

direction (soaliigmemn?) <o they do

zero work:

(b) Apply the work-kinetic-energy
theorem to the sled and solve for the
final speed:

1. We find the work done by calculating the
area under the F ~versus-x curve:

2. This area is the sum of the two areas
shown. The area of a triangle is one half
the altitude times the base:

e

W W = F Ax = Fcosf Ax

total — "Vyou

= (180 N)(cos 40°)(5.0 m) = 689 ]

- [ ]

I/vtotal = %mv? - %mvlz
total
i
2(689])
=0+ = : 2/q2
0 80 kg 17.2 m?/s

% = V17.2m%s? = 4151 m/s =

W=A

total

W=A4,.,=4,+4,

total

= G.ON)(4.0m) + (5.0 N)(2.0 m)

=20] +507 = [257]

F, N

6.0
5.0
40}
30}
20 A
10}

1020304

T

.05.06.0 x, m
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11.

_ Make a sketch of yourself and draw the two force vectors on the sketch

. The final speed is related to the final k W,

?)

(Figure 6-234). Also include coordinate axes. The work—kinetic-energy
theorem, with v, = 0, relates the final speed v; to the total work.

— Lugens? o Loapiti® |
total — 2"MVf i ;

kinetic energy, which in turn is related to
the total work by the work-kinetic-
energy theorem:

. For each of you, the total work is the W = Wo t W,
work done by the normal force plus the
work done by the gravitational force:
. The force mg on you is constant, but the aw, = fn dt = F cos¢d

force F, is not constant. First we calculate
the work done by F. . Calculate the work

dW,, done on you by fn for an infinitesimal | _
displacement d¢ Wat an ﬂ

arbitrary location along the rurn:

. Find the angle ¢ between the directions ¢ = 90°

of fn and d€. The displacement d ?is
tangent to the slope:

Apply the work-kinetic-energy theorem W, + W, = AK
to find v;:

The final speed depends only on 1, which 0+ mgh=3mv? -0 so v,=V2gh

. Calculate the work done by fn for the W, = JFn cos90° d€ = J(O) dat=20
entire run:
. The force of gravity fg is constant, so the W, = mg - 7= —mgf C(Axi + Ayf)
work done by gravity is Wg =F o £, = —mg Ay mg
where € (Gimmssiegst) is the net ra
displacement from the top to the bottom Ay |
of the lift: S %
|
. The skier is descending the hill, so Ay is Ay = —h E
negative. From Figure 6-23a, wesee that T A T
Ay = —h:
. Substituting gives: W, = mgh vl

is the same for both runs. Both of you will YOU WIN! | (The bet was that she would not be going faster than you.)

have the same final speeds.




1. Draw a free-body diagram. The forces on the backpack are shown in
Fig. 6-4b: the force of gravity, mg, acting downward; and Fy, the force the
hiker must exert upward to support the backpack. Since we assume there is
negligible acceleration, horizontal forces on the backpack are negligible.

2. Choose a coordinate system. We are interested in the vertical motion of the
backpack, so we choose the y coordinate as positive vertically upward.

3. Apply Newton’s laws. Newton’s second law applied in the vertical direction
to the backpack gives

2F, = ma
Ky —mg=0.

y

Hence,
Fy = mg = (15.0 kg)(9.80 m/sz) = 147 N.

4. Find the work done by a specific force. (@) To calculate the work done by
the hiker on the backpack, we write Eq. 6-1 as

Wy = Fy(d cos9),
and we note from Fig. 6-4a that dcosf = h. So the work done by the
hiker is

Wy = Fy(dcos8) = Fyh = mgh
(147 N)(10.0m) = 147017.

Note that the work done depends only on the change in elevation and not
on the angle of the hill, . The hiker would do the same work to lift the pack
vertically the same height A.

(b) The work done by gravity on the backpack is (from Eq. 6-1 and Fig. 6-4c)

Ws = Fgd cos(180° — ).

Since cos(180° — 6) = —cos 0, we have
Ws = Fgd(—cos8) = mg(—d cos )
= —mgh

~(15.0kg)(9.80 m/s%)(10.0m) = —147017.

NOTE The work done by gravity (which is negative here) doesn’t depend on the
angle of the incline, only on the vertical height & of the hill. This is because
gravity acts vertically, so only the vertical component of displacement contributes
to work done.

5. Find the net work done. (a) The ner work done on the backpack is
Whet = 0, since the net force on the backpack is zero (it is assumed not to
accelerate significantly). We can also determine the net work done by
adding the work done by each force:

Woet = W + Wy = —14707 + 14707 = 0.

NOTE Even though the ner work done by all the forces on the backpack is
zero, the hiker does do work on the backpack equal to 14701J.



¥ The only forces acting on Jane are gravity and the vine tension._ The tens.ion —_
pulls in a centripetal direction, and so can do no work— the Fensxon forc.:e 1s
perpendicular at all times to her motion. So Jane’s mechanical enagy is '
conserved. Subscript 1 represents Jane at the point where she grabs the vine, and
subscript 2 represents Jane at the highest point of her swing. The ground is the

zero location for PE (y = 0). We have v, =5.3 m/s , ¥ =0,and v, =0 (top of v, , Y,
swing). Solve for y,, the height of her swing.
Lmv; + mgy, =tmv +mgy, — +mv}+0=0+mgy, —

y, = B3ms) e

* 2 2(98m/s?)
@, the length of the vine does not enter into the calculation, unless the vine is le‘ss than 0.7 m long.
If that were the case, she could not rise 1.4 m high. Instead she would wrap the vine around the tree

branch.

vl ’yl

‘ * The block-spring combination is assumed to initially be at equilibrium, so the spring is neither
stretched nor unstretched. At the release point, the speed of the mass is 0, and so the initial energy is

all PE, given by Lkx; . That is the total energy of the system. Thus the energy of the system when
the block is at a general location with some non-zero speed will still have this same total energy

value. This is expressed by E,, =|+mv’ +Lkx’ = Lia?|.

# Consider this diagram for the jumper’s fall.

(a) The mechanical energy of the Jumper is conserved. Usey 4"~ 7 <~ Start of fall
for the distance from the 0 of gravitational PE and x for the
amount of bungee cord “stretch” from its unstretched
length. Subscript 1 represents the jumper at the start of the ) 3 -‘O'%'—'{ - Contact with bungee
fall, and subscript 2 represents the jumper at the lowest cord. O for elastic PE
point of the fall. The bottom of the fall is the zero location

for gravitational PE ( y= 0) » and the location where the 19m
bungee cord just starts to be stretched is the zero location
for elastic PE (x = 0) . Wehave v, =0, ¥, =31 m,

% =0,v,=0,y,=0,and x,=19m. Apply

12m

V. Q}_ﬁ\/_ _ Bottom of fall, 0 for
gravitational PE

conservation of energy.

2 7 5 2 2
E=E — +my +mgy, ++kx; =<mv, +mgy, ++kx;, — mgy, =+kx;, —

2(62 kg)(9.8m/s*)(31
k=2m8y1 _ ( g)( m/s )( m):104,4N/mz 1.0x10? N/Hl

x22 ( 19 m)2
(b) The maximum acceleration occurs at the location of the maximum force, which
occurs when the bungee cord has its maximum stretch, at the bottom of the fall. F .
COr

Write Newton’s 2™ law for the force on the Jumper, with upward as positive.
F =F_ ,~mg=kx,-mg=ma —

net cord

kx,  (104.4N/m)(19 m)
m ° T (62ke)

—9.8m/s2 = 22‘2m/s2 ~ 22m/s2

a=

&(@ Wd@
See sedes —




1. Choose the system to be the car, its contents, the track, and Earth.
Draw a picture of the car and track, with the car at the starting

point, at the bottom of the track, and again at the top of the I00p g%

S

2. Apply Newton’'s second law to relate the speed at the top of the loop
to the normal force:

. Apply the work~energy theorem to the interval prior to impact.
There are no external forces and no internal nonconservative forces
do work. Find the speed just prior to impact. Measuring heights from
the bottom of the loop, the initial height of 4R, where R is the radius
of the loop, is two times the height of the top of the loop:

. The impact with the sandbag results in a 25 percent decrease in
speed. Find the speed after impact:

. Apply the work-energy theorem to the interval following impact.
Find the speed at the top of the loop-the-loop:

- Substituting for 7, in the step-2 result gives:

. Solve for F_:

. E, is the magnitude of the normal force. It cannot be negative:

=

2
& top

R

E +mg=m

W, = AE W

ext ‘mech nc

0=AE_, -0

K Emechf = Emechi

U, + K, =U, + K
mg4R + 0 =0 + jmv?
so v, = V8Rg

v, = 0.75v, = 0.75V8Rg

utop + Ktop = uZ + KZ

mg2R + %mvfop =0+ im(0.752- 8Rg)
so v2 = (075%-8 — 4)Rg = 0.5Rg

top
0.5Rg
E +mg= m—

F + mg = 05mg
F = —0.5mg

Oops! The car has left the track.




(a) 1.

10.

®) 1.

. Substitute for W.

Make a sketch of the system in its initial and final configurations
(Figure 7-11). We choose y = 0 at the bottom of the swing and
y = h at the initial position:

. The external work done on the system equals the change in its

mechanical energy minus the work done by internal
nonconservative forces (Equation 7-10):

. There are no external forces acting on the system. The tension

force is an internal nonconservative force:

. The displacement increment d€ equals the velocity times the

time increment dt. Substitute into the step-3 result. The tension is
perpendicular to the velocity, so T+% = 0:

and W, in the step-2 result. The bob initially

ext
is at rest:

. Apply conservation of mechanical energy. The bob initially

is at rest:

. Conservation of mechanical energy thus relates the speed v, , to

the initial height y, = h:

. Solve for the speed v, :

. To express speed in terms of the initial angle 6, we need to relate

h to 6. This relation is illustrated in Figure 7-11:

Substitute this value for & to express the speed at the bottom in
terms of 6;:

When the bob is at the bottom of the circle, the forces on it are mg
and T. Apply 2F = ma,:

. At the bottom, the bob has an acceleration v , /L in the centripetal

direction (toward the center of the circle), which is upward:

. Substitute for a, in the Part-(b), step-1 result and solve for T:

L cos 8,

o
>
-
»

—,,LH=L-—LCOSQO

FIGURE 7-11

Wext = 0

2
W, = 1 T-de
de = Gdt

Wext = AEmech - Wnc
0=AE .0
AEmech 0

Emechf = Emechi

1 —1
smv? + mgy, = 3mv? + mgy,
gmvd, + 0 =0+ mgh

1,2 —
ymog = mgh

vbot =V 2gh

L=Lcost, +h
so h=L-Lcosf, =L(1 — cosf)

V2gL(1 — cosé,)

vbot =

T - mg=ma,

vl 2gL(1 — coséb,)
a,= Lm = fe =2g(1 — cosf,)

)s]
It

mg + ma, =m(g +a)=mlg+ 2¢(1 ~ cosby)]

1l
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If the original sp:

PE_, =

full

spring, con . :
dlt)atermined. As the spring is stretched a distance x, ea

half-spring will have an amount of potential energy store
energy in the two half-springs must equal the arzlount ,
PE, =2PE,, - tki=2[+K'(x2) ] > ¥=

(@

(®)

The integral around C is equal
to the sum of the integrals

along the segments that make
up C:

OnC,,dy = 0,50 d€, = dxi:

OnCz,dx=0andx=xmax, ff-d 5
sod?2=dyfandf=Axm i s

OnC,,dy = 0,50 d€, = dxi:

OnC4,dxA=0andx=0,so
df,=dyjand F = 0:

Add the step-2, -3, -4, and -5
results:

ring is stretched a distance x from equiﬁbﬁ@, then the po
Lke® . Alternatively, think of the original spring as being made up
2 nected from end to end. Each half of the spring ha

tential energy stored is
of the two halves of the

s a spring constant k', to be

ch half-spring is stretched a distance x/2. Each

of energy in the full spring.
2k

dof PE_ =+k'(x/ 2)". The amount of

The tension in the cord is perpendicular to the path at all times, and so the tension in the cord

does not do any work on the ball. Thus the mechanical energy of the ball is conserved.
ball when it is horizontal, and subscript 2 represents the ball at the
The lowest point on the path is the zero location for PE ( y= O) . We

Subscript 1 represents the
lowest point on its path.

have v, =0, y =L, and ¥, =0. Solve for v,.

E=E — tmy! +mgy,
Use conservation of energy, to relate points 2 and 3. Point 2 is as
represents the ball at the top of its circular path around the
the zero location for PE ( y= O). We have v, = /2gL , Y

Lysi? 2
v, +tmgy, — mgL:;‘mvz —> v, =

=0, and

¥, =2(L~h)=2(L-0.80L)=040L . Solve for V.

E,=E, —

v, =4/1.2gL

ax

Xl'llix pes .A max
j Axi- dxi = AJ xdx = 1 Ax?
0

ym‘" ~ -~
f Ax 1 dyj = Axmaxj
0 0

(i f = 0 because 7 and f are perpendicular.)

_Af“‘
0

0
f Axi - dxi
X

tm

max

+ 0 - JAx2

g ~ A~
=f 0i-dyj =0
y

2gL

2
TV, +mgy, =Lmy? +mgy, — +m(2gL)=Lmv? +mg (040L) —

described above. Subscript 3
peg. The lowest point on the path is

max

Ve,

i-jdy=0

xdx = —3Ax2

2o+ 0=[0]

P C
e,
Ymax <
- C3 Cz

e, .

‘ ¥ ‘Tdez
C4 Cl
0 -
= dé— Xmax
d ) 0 t
i o — .




