
Group Problems #36 - Solutions

Monday, November 28

Problem 1 Transition Selection Rules

An electron is in the ground-state of a 1D infinite square well:

U(x) =


∞, for x ≤ −L/2,
∞, for x ≥ L/2,

0, for −L/2 < x < L/2.

(1)

(a) What are the general solutions for the unperturbed Hamiltonian, ψ0
n(x)? (Pay

attention to the symmetry of the potential!!!)

The general solutions for this potential (note that the potential is centered around
x = 0 in this case, −L/2 < x < L/2) are given by:

ψ0
n(x) =


√

2
L

cos nπx
L
, for n = 1, 3, 5, ...√

2
L

sin nπx
L
, for n = 2, 4, 6, ...

(2)

These solutions are equivalent to those we found when the well extended over
0 < x < L.

(b) Draw the first three solutions of the unperturbed Hamiltonian, ψ0
1(x), ψ0

2(x), and
ψ0

3(x).

n = 1: n = 2: n = 3: 

-L/2 L/2 

ψ0
1(x) ψ0

2(x) ψ0
3(x)

1



2

(c) At time t = 0 an electric field ξ̂ = ξx̂ is switched on for duration ∆t. After the
perturbation has been applied, the wavefunction can be approximated by,

ψt=∆t(x) ' Aψ0
1(x) + ψpert(x, t) (3)

= Aψ0
1(x)− i∆t

~
Wψ0

1(x), (4)

where W = eξx is the perturbation term caused by application of the electric
field. Draw ψpert(x) for this case. (Ignore the “i” for now.)

-L/2 L/2 

ψ0
1(x)

−xψ0
1(x)

−x

(d) What can you deduce by graphical comparison of ψpert(x) and ψ0
2(x)?

The similarity between xψ0
1(x) and ψ0

2(x) indicates that the perturbation pri-
marily induces a transition between the initial ground state (n = 1) and the 1st

excited state (n = 2). Note that the amplitude of the perturbation part of the
wavefunction depends on the duration it is applied, ∆t, and also on the strength
of the electric field, ξ.

(e) What is the transition probability between states n = 2 and n = 3?

As given in the lecture, the generic expression for the transition probability from
state n to state m is given by:

P(n→ m) =

(
∆t

~

)2 ∣∣∣∣∫ ∞
−∞

ψ∗m(x)W ψn(x) dx

∣∣∣∣2 . (5)

For n = 2, m = 3, and W = eξx, we have:

P(2→ 3) =

(
∆t

~

)2
4

L2

∣∣∣∣∣
∫ L/2

−L/2
cos(3πx/L) e ξ x sin(2πx/L) dx

∣∣∣∣∣
2

(6)

=
4

L2

(
e ξ∆t

~

)2(
−24L2

25π2

)2

(7)

(f) What is the transition probability between states n = 2 and n = 4?

For n = 2 and m = 4, we have:

P(2→ 4) =

(
∆t

~

)2
4

L2

∣∣∣∣∣
∫ L/2

−L/2
sin(4πx/L) e ξ x sin(2πx/L) dx

∣∣∣∣∣
2

(8)

= 0. (9)
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3

The integral is null since both sin(2πx/L) and sin(4πx/L) are both odd functions
of x, whereas eξx is obviously an odd function of x. Thus the integrand is an odd
function of x and integration over symmetric bounds will identically yield zero.

(g) Can you deduce a general “selection rule” for this perturbation?

The selection rule arises from Eq. 5: the integrand must be an even function of
x. For the current perturbation, W = eξx, this means that ψn and ψm must have
opposite parity (i.e., if one is even the other must be odd) so that the integrand
is even. Note that the product of two even functions is even, the product of two
odd functions is even, and the product of an even and an odd function is odd.

(h) How does the selection rule depend on the form of the perturbation?

As just described, the integrand in Eq. 5 must be even for the transition proba-
bility to be nonzero. Thus, if the perturbation W is odd (as it is in this example:
W = eξx) then the initial and final states must have opposite parity. In contrast,
if W is even, then the initial and final states must have the same parity. Finally
if W is of mixed parity (e.g., W = Ax2 + Bx), then no transitions are excluded
by parity.
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