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Vector Algebra and Calculus

1 Revision of vector algebra, scalar product, vector product

2 Triple products, multiple products, applications to geometry

3 Differentiation of vector functions, applications to mechanics

4 Scalar and vector fields. Line, surface and volume integrals,
curvilinear co-ordinates

5 Vector operators — grad, div and curl

6 Vector Identities, curvilinear co-ordinate systems

7 Gauss’ and Stokes’ Theorems and extensions

8 Engineering Applications
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Vector Operator Identities & Curvi Coords

In this lecture we look at identities built from vector operators.

These operators behave both as vectors and as differential operators, so
that the usual rules of taking the derivative of, say, a product must be
observed.

We are laying the groundwork for the use of these identities in later parts
of the Engineering course.
We then turn to derive expressions for grad,
div and curl in curvilinear coordinates.
After deriving general expressions, we will
specialize to the Polar family.
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Identity 1: curl grad U = 0

U(x , y , z) is a scalar field.

Then

∇×∇U =

∣∣∣∣∣∣
ı̂ ̂ k̂

∂/∂x ∂/∂y ∂/∂z
∂U/∂x ∂U/∂y ∂U/∂z

∣∣∣∣∣∣
= ı̂

(
∂2U
∂y∂z

−
∂2U
∂z∂y

)
+ ̂ () + k̂ ()

= 0 .

∇×∇ can be thought of as a null operator.
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Identity 2: div curl a = 0

For a(x , y , z) a vector field:

∇ · (∇× a) =

∣∣∣∣∣∣
∂/∂x ∂/∂y ∂/∂z
∂/∂x ∂/∂y ∂/∂z
ax ay az

∣∣∣∣∣∣
=

∂2az

∂x∂y
−

∂2ay

∂x∂z

−
∂2az

∂y∂x
+

∂2ax

∂y∂z

+
∂2ay

∂z∂x
−

∂2ax

∂z∂y
= 0
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Identity 3: divergence of Uv

U(r) is a scalar field and v(r) is a vector field.

Eg, U(r) could be fluid density, and v(r) its instantaneous velocity. Then
Uv = mass flux per unit area.

We are interested in the divergence of the product Uv.

∇ · (Uv) = U(∇ · v) + (∇U) · v = Udiv v + (gradU) · v

In steps:

∇ · (Uv) =

(
∂

∂x
(Uvx) +

∂

∂y
(Uvy ) +

∂

∂z
(Uvz)

)
= U

∂vx

∂x
+ U

∂vy

∂y
+ U

∂vz

∂z
+ vx

∂U
∂x

+ vy
∂U
∂y

+ vz
∂U
∂z

= Udiv v + v · gradU
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Identity 3: curl of Ua

In a similar way, we can take the curl of the product of a scalar and
vector field field Uv.

The result should be a vector field.

And you’re probably happy now to write down

∇× (Uv) = U(∇× v) + (∇U)× v .
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Identity 4: div of a× b

But things get trickier to guess when vector or scalar products are
involved! Eg, not at all obvious that:

div (a× b) = curl a · b− a · curlb

Writing ∇ · (a× b) indicates that the you could work this like a scalar
triple product∣∣∣∣∣∣

∂/∂x ∂/∂y ∂/∂z
ax ay az
bx by bz

∣∣∣∣∣∣
=

∂

∂x
[aybz − azby ] +

∂

∂y
[azbx − axbz ] +

∂

∂z
[axby − aybx ]

= . . .
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Vector operator identities in HLT

We could carry on inventing vector identities for some time, but ...

Why bother at all, as they are in HLT?

1 Since grad , div and curl describe key aspects of vectors fields, they
often arise often in practice.

The identities can save you a lot of time and hacking of partial
derivatives, as we will see when we consider Maxwell’s equation as
an example later.

2 Secondly, they help to identify other practically important vector
operators.

We now look at such an example.
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Identity 5: curl (a× b)

curl (a× b) =

∣∣∣∣∣∣
ı̂ ̂ k̂

∂/∂x ∂/∂y ∂/∂z
aybz − azby azbx − axbz axby − aybx

∣∣∣∣∣∣
⇒ curl (a× b)x =

∂

∂y
(axby − aybx) −

∂

∂z
(azbx − axbz)

Write as sum of four terms, but add and subtract RED and BLUE terms

ax

(
∂bx

∂x
+
∂by

∂y
+
∂bz

∂z

)
− bx

(
∂ax

∂x
+
∂ay

∂y
+
∂az

∂z

)
+[

bx
∂

∂x
+ by

∂

∂y
+ bz

∂

∂z

]
ax −

[
ax
∂

∂x
+ ay

∂

∂y
+ az

∂

∂z

]
bx

Hence, gathering in the y and z components too:

∇× (a× b) = (∇ · b)a− (∇ · a)b+ [b ·∇]a− [a ·∇]b

[a ·∇] can be regarded as new, useful, scalar differential operator.
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Definition of the operator [a ·∇]

This is a scalar operator ...

[a ·∇] ≡
[
ax
∂

∂x
+ ay

∂

∂y
+ az

∂

∂z

]
.

Notice that the components of a don’t get touched by the differentiation.

Applied to a scalar field, results in a scalar field

Applied to a vector field results in a vector field
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Identity 6: curl (curl a) for you to derive

Amuse yourself by deriving the following important identity ...

curl (curl a) = grad (div a) −∇2a

where
∇2a = ∇2ax ı̂+∇2ay ̂+∇2az k̂

We are about to use it ....
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♣ Eg using Identity 6: electromagnetic waves
Background: James Clerk Maxwell established (1865) a set of four vector
equations, fundamental to working out how electromagnetic waves
propagate. The entire telecommunications industry is built on these!

divD = ρ

divB = 0

curlE = −
∂

∂t
B

curlH = J+
∂

∂t
D

In addition, we can assume the following

D = εrε0E
B = µrµ0H
J = σE grown-up Ohm’s law

30 January 1858 “... I have

been lecturing on statical

electricity to the 2nd year,

and next week I shall have

half a dozen to study

electrical images over a cup

of tea...”
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Example ctd

Q: Show that in a material with no free charge, ρ = 0, and with zero
conductivity, σ = 0, the electric field E must be a solution of the wave
equation ∇2E = µrµ0εrε0(∂

2E/∂t2) .

A:
divD = div (εrε0E) = εrε0divE = ρ = 0;⇒divE = 0
divB = div (µrµ0H) = µrµ0divH = 0 ⇒divH = 0
curlE = −∂B/∂t = −µrµ0(∂H/∂t)
curlH = J+ ∂D/∂t = 0+ εrε0(∂E/∂t)

But
curl curlE = ∇(∇ · E) −∇2E, so

curl [−µrµ0(∂H/∂t)] = −∇2E

−µrµ0
∂

∂t
[curlH] = −∇2E

Then finally:

−µrµ0
∂

∂t

[
εrε0

∂E
∂t

]
= −∇2E

⇒µrµ0εrε0
∂2E
∂t2

= ∇2E
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Grad, div, curl and ∇2 in curvilinear coords

It is possible to obtain general expressions for grad , div and curl in any
orthogonal curvilinear co-ordinate system ...

We would guess that we’ll need the scale factors h ...

Recall that the unit vector in the direction of increasing u, with v and w

being kept constant, is û =
1
hu

∂r
∂u

where r is the general position vector,

and hu =

∣∣∣∣ ∂r∂u
∣∣∣∣ and similar expressions apply for v and w .

Then
dr = huduû+ hvdv v̂ + hwdwŵ .
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Grad in curvilinear coordinates

Using the gradient of a scalar field φ,

∇φ · dr = dφ and dφ =
∂φ

∂u
du +

∂φ

∂v
dv +

∂φ

∂w
dw

It follows that

∇φ · (huûdu + hv v̂dv + hw ŵdw) =
∂φ

∂u
du +

∂φ

∂v
dv +

∂φ

∂w
dw

The only way this can be satisfied for independent du, dv , dw is when

Grad φ in curvilinear coords:

∇φ =
1
hu

∂φ

∂u
û+

1
hv

∂φ

∂v
v̂ +

1
hw

∂φ

∂w
ŵ
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Divergence in curvilinear coordinates

If the curvilinear coordinates are orthogonal
then δVolume is a cuboid (to 1st order in
small things) and

dV = hu hv hw du dv dw .

BUT it is not quite a cuboid: the area of
two opposite faces will differ as the scale
parameters are functions of u, v , w .

w

h  (v+dv) dw
w

h  (v) dw
w

h  (v) du
u

u
v

The scale params are
functions of u,v,w

h   dv

h  (v+dv) duu

v

So the net efflux from the two faces in the v̂ dirn is[
av +

∂av

∂v
dv
] [

hu +
∂hu

∂v
dv
] [

hw +
∂hw

∂v
dv
]

dudw − avhuhwdudw

≈ ∂(avhuhw )

∂v
dudvdw
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Divergence in curvilinear coordinates /ctd

Repeat: the net efflux from the two faces in the v̂ dirn is[
av +

∂av

∂v
dv
] [

hu +
∂hu

∂v
dv
] [

hw +
∂hw

∂v
dv
]

dudw − avhuhwdudw

≈ ∂(avhuhw )

∂v
dudvdw

Now div is net efflux per unit volume, so sum up other faces:

div a dV =

(
∂(au hv hw )

∂u
+
∂(av hu hw )

∂v
+
∂(aw hu hv )

∂w

)
dudvdw

Then divide by dV = huhvhwdudvdw ...

div in curvilinear coords is:

div a =
1

huhvhw

(
∂(au hv hw )

∂u
+
∂(av hu hw )

∂v
+
∂(aw hu hv )

∂w

)
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Curl in curvilinear coordinates
For an orthogonal curvi coord system
dS = huhvdudw .

But the opposite sides are not of same
length!

The lengths are
hu(u, v ,w)du, and hu(u, v+dv ,w)du.

v

v
u

au(u,v+dv,w)

h  (u,v+dv,w)duu

h  (u,v,w)duu

a (u,v,w)u

v+dv

u+du

Summing this pair contributes to circulation (in ŵ dirn)

au(u, v ,w)hu(u, v ,w)du − au(u, v+dv ,w)hu(u, v+dv ,w)du = −
∂(huau)

∂v
dvdu

Add in the other pair to find circulation per unit area

dC
huhvdudv

=
1

huhv

(
−
∂(huau)

∂v
+
∂(hvav )

∂u

)
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Curl in curvilinear coordinates, ctd
To repeat, the part related to ŵ is:

dC
huhvdudv

=
1

huhv

(
−
∂(huau)

∂v
+
∂(hvav )

∂u

)
Adding in the other two components gives:

curl a(u, v ,w) =
1

hvhw

(
∂(hwaw )

∂v
−
∂(hvav )

∂w

)
û +

1
hwhu

(
∂(huau)

∂w
−
∂(hwaw )

∂u

)
v̂ +

1
huhv

(
∂(hvav )

∂u
−
∂(huau)

∂v

)
ŵ

You should show that can be written more compactly as:

Curl in curvi coords is:

curl a(u, v ,w) =
1

huhvhw

∣∣∣∣∣∣
huû hv v̂ hw ŵ
∂
∂u

∂
∂v

∂
∂w

huau hvav hwaw

∣∣∣∣∣∣
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The Laplacian in curvilinear coordinates

Substitute the components of gradφ into the expression for div a ...

Much grinding gives the following expression for the Laplacian in general
orthogonal co-ordinates:

Laplacian in curvilinear coords is:
∇2U =

1
huhvhw

[
∂

∂u

(
hvhw

hu

∂U
∂u

)
+
∂

∂v

(
hwhu

hv

∂U
∂v

)
+
∂

∂w

(
huhv

hw

∂U
∂w

)]
.
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Grad, etc, the 3D polar coordinate

There is no need slavishly to memorize the above derivations or their
results.

More important is to realize why the expressions look suddenly more
complicated in curvilinear coordinates

We are now going to specialize our expressions for the polar family

As they are 3D entities, we need consider only cylindrical and spherical
polars.
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Grad, etc, in cylindrical polars
Recall that r = r cos θ̂ı+ r sin θ̂+ z k̂, and that hu = |∂r/∂u|, and so

hr =
√
(cos2 θ+ sin2θ) = 1,

hθ =

√
(r2 sin2 θ+ r2 cos2 θ) = r ,

hz = 1

Hence, using these and U(r , θ, z) and a = ar r̂ + aθθ̂+ aφφ̂

gradU =
∂U
∂r

r̂ +
1
r
∂U
∂θ

θ̂+
∂U
∂z

k̂

div a =
1
r

(
∂(rar )

∂r
+
∂aθ
∂θ

)
+
∂az

∂z

curl a =

(
1
r
∂az

∂θ
−
∂aθ
∂z

)
r̂ +

(
∂ar

∂z
−
∂az

∂r

)
θ̂+

1
r

(
∂(raθ)
∂r

−
∂ar

∂θ

)
k̂

The derivation of the expression for ∇2U in cylindrical polar co-ordinates
is set as a tutorial exercise.
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Grad, etc, in spherical polars
We recall that r = r sin θ cos φ̂ı+ r sin θ sinφ̂+ r cos θk̂ so that

hr =

√
(sin2 θ(cos2φ+ sin2φ) + cos2 θ) = 1

hθ =

√
(r2 cos2 θ(cos2φ+ sin2φ) + r2 sin2 θ) = r

hφ =

√
(r2 sin2 θ(sin2φ+ cos2φ) = r sin θ

grad U =
∂U
∂r

r̂ +
1
r
∂U
∂θ

θ̂+
1

r sin θ
∂U
∂φ

φ̂

div a =
1
r2

∂(r2ar )

∂r
+

1
r sin θ

∂(aθ sin θ)
∂θ

+
1

r sin θ
∂aφ
∂φ

curl a =
r̂

r sin θ

(
∂

∂θ
(aφ sin θ) −

∂

∂φ
(aθ)

)
+

θ̂

r sin θ

(
∂

∂φ
(ar ) −

∂

∂r
(aφr sin θ)

)
+

φ̂

r

(
∂

∂r
(aθr) −

∂

∂θ
(ar )

)
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♣ Examples

Q:
Find curl a in

Cartesians, and
Spherical polars

when a = x(x ı̂+ y ̂+ z k̂).

A(i):
In Cartesians, using the pseudo determinant gives

curl a =

∣∣∣∣∣∣
ı̂ ̂ k̂

∂/∂x ∂/∂y ∂/∂z
x2 xy xz

∣∣∣∣∣∣ = −z ̂+ y k̂



A1 2015 26 / 1

♣ Example /ctd
A(ii):
We were told a = x(x ı̂+ y ̂+ z k̂).
In spherical polars x = r sin θ cosφ and (x ı̂+ y ̂+ z k̂) = r
Hence a = r sin θ cosφr = r2 sin θ cosφ r̂
or in component form: ar = r2 sin θ cosφ; aθ = 0; aφ = 0 .
Expression for curl (earlier, and HLT):

curl a =
r̂

r sin θ

(
∂

∂θ
(aφ sin θ)−

∂

∂φ
(aθ)

)
+

θ̂

r sin θ

(
∂

∂φ
(ar )−

∂

∂r
(aφr sin θ)

)
+

φ̂

r

(
∂

∂r
(aθr)−

∂

∂θ
(ar )

)

⇒curl a =
θ̂

r sin θ

(
∂

∂φ
(r2 sin θ cosφ)

)
+

φ̂

r

(
−
∂

∂θ
(r2 sin θ cosφ)

)
=

θ̂

r sin θ
(−r2 sin θ sinφ) +

φ̂

r
(
−r2 cos θ cosφ)

)
= θ̂(−r sinφ) + φ̂(−r cos θ cosφ)
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Check: These two results should be the same!

To check we need r̂, θ̂, φ̂ in terms of ı̂, ̂, k̂ ...

If we were doing this for a perfectly general curvi coord system we would
resort to writing the position vector

r = x ı̂+ y ̂+ z k̂

Then using

r̂ =
1
hr

∂r
∂r

; θ̂ =
1
hθ
∂r
∂θ

; φ̂ =
1

hφ
∂r
∂φ

Then, doing the first of these, and using hr = 1

r̂ =
∂

∂r

(
r sin θ cos φ̂ı+ r sin θ sinφ̂+ r cos θk̂

)
=

(
sin θ cos φ̂ı+ sin θ sinφ̂+ cos θk̂

)
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Check: These two results should be the same!
As these are spherical polars, they are easy enough to write down!

 r̂
θ̂

φ̂

 =

 sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

 ı̂
̂
k̂

 = [R]

 ı̂
̂
k̂


Don’t be surprised to see a rotation
matrix [R]!

We are rotating one right-handed
orthogonal coord system into
another.

x

y

z

ı̂
̂

k̂ θ̂
φ̂

r̂

P

r

φ

θ
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Check /ctd
Now write down our earlier result, and slot in the transformation ...

curl a = θ̂(−r sinφ) + φ̂(−r cos θ cosφ) = −r [0, sinφ, cos θ cosφ]

 r̂
θ̂

φ̂


= −r [0, sinφ, cos θ cosφ]

 sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

 ı̂
̂
k̂


= Bish Bash Bosh

= −r cos θ̂+ r sin θ sinφk̂
= −z ̂+ y k̂

This is exactly what we got before!

Rather a lot of work to check, but worth doing.
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Summary

Take home messages ...
The key thing when combining operators is to remember that each
partial derivative operates on everything to its right.

The identities (eg in HLT) are not mysterious. They merely provide
useful short cuts.

There is no need slavishly to learn the expressions for grad, div and curl
in curvi coords.
They are in HLT, but

you need to know how they originate.
you need to be able to hack them out when asked.

Ditto with the specializations to polars.

Just as physical vectors are independent of their coordinate systems, so
are differential operators.


