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Vector Algebra and Calculus

1 Revision of vector algebra, scalar product, vector product

2 Triple products, multiple products, applications to geometry

3 Differentiation of vector functions, applications to mechanics

4 Scalar and vector fields. Line, surface and volume integrals,
curvilinear co-ordinates

5 Vector operators — grad, div and curl

6 Vector Identities, curvilinear co-ordinate systems

7 Gauss’ and Stokes’ Theorems and extensions

8 Engineering Applications
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Vector Operators: Grad, Div and Curl

We introduce three field operators which reveal interesting collective field
properties, viz.

the gradient of a scalar field,

the divergence of a vector field, and

the curl of a vector field.

There are two points to get over about each:

The mechanics of taking the grad, div or curl, for which you will
need to brush up your calculus of several variables.
The underlying physical meaning — that is, why they are worth
bothering about.
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The gradient of a scalar field
Recall the discussion of temperature distribution, where we wondered
how a scalar would vary as we moved off in an arbitrary direction ...

If U(r) is a scalar field, its gradient is defined in Cartesians coords by

gradU =
∂U
∂x

ı̂ +
∂U
∂y

̂ +
∂U
∂z

k̂ .

It is usual to define the vector operator ∇

∇ =

[̂
ı
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

]
which is called “del” or “nabla”. We can write gradU ≡∇U

NB: gradU or ∇U is a vector field!

Without thinking too hard, notice that gradU tends to point in the
direction of greatest change of the scalar field U
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The gradient of a scalar field
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♣ Examples of gradient evaluation
♣1. U = x2

∇U =
[̂
ı ∂

∂x + ̂ ∂
∂y + k̂ ∂

∂z

]
x2

Only ∂/∂x exists so
∇U = 2x ı̂ .

♣2. U = r2 = x2 + y2 + z2, so

∇U =

[̂
ı
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

]
(x2 + y2 + z2)

= 2x ı̂+ 2y ̂+ 2z k̂
= 2 r.

♣3. U = c · r, where c is constant.

∇U =

[̂
ı
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

]
(c1x + c2y + c3z)

= c1̂ı+ c2 ̂+ c3k̂ = c .
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♣ Another Example ...

♣4. U = f (r)
First, remember this from 1st year? (Don’t answer ...)

f = f (x , y , z); r = r(x , y , z), and f = f (r). ⇒ df /dr exists.

df =
∂f
∂x

dx +
∂f
∂y

dy +
∂f
∂z

dz & dr =
∂r
∂x

dx +
∂r
∂y

dy +
∂r
∂z

dz

⇒ df
dr

=

∂f
∂x dx + ∂f

∂y dy + ∂f
∂z dz

∂r
∂x dx + ∂r

∂y dy + ∂r
∂z dz

But x ,y ,z are independent, so can choose dx , dy , dz at will and the above
expression MUST still hold.
Choose dz = dy = 0, dx = dz = 0 then dx = dy = 0 in turn ...

df
dr

=
∂f
∂x
/
∂r
∂x

df
dr

=
∂f
∂y
/
∂r
∂y

df
dr

=
∂f
∂z
/
∂r
∂z
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Example /ctd

Now back to our problem:

∇U =
∂f
∂x

ı̂+
∂f
∂y

̂+
∂f
∂z

k̂ =
df
dr

[
∂r
∂x

ı̂+
∂r
∂y

̂+
∂r
∂z

k̂
]

But r =
√

x2 + y2 + z2, so
∂r
∂x

=
x
r
and similarly for y , z .

Hence if f = f (r)

⇒∇U =
df
dr

[
x ı̂+ y ̂+ z k̂

r

]
=

df
dr

[ r
r

]
.

Note that f (r) is spherically symmetrical and the resultant vector field is
radial out of a sphere.
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The significance of grad

We know that the total differential and grad are defined as

dU =
∂U
∂x

dx +
∂U
∂y

dy +
∂U
∂z

dz & ∇U =
∂U
∂x

ı̂+
∂U
∂y

̂+
∂U
∂z

k̂

So, we can rewrite the change in U as

dU = ∇U · (dx ı̂+ dy ̂+ dz k̂) = ∇U · dr

Conclude that

The gradient
∇U · dr is the small change in U when we move by dr. (+ve increase,
−ve decrease.)
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Significance /ctd

We also know (Lecture 3) that
dr has magnitude ds.
So divide by ds

⇒ dU
ds

= ∇U ·
[
dr
ds

] gradU

r

U(r)

U(r+ dr)
dr

But dr/ds is a unit vector in the direction of dr.

Conclude that

The gradient
gradU has the property that the rate of change of U wrt distance in any
direction d̂ is the projection of gradU onto that direction d̂
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Directional derivatives

That is
dU
ds

(in direction of d̂) = ∇U · d̂

The quantity dU/ds is called a directional derivative.

In general, a directional derivative

has a different value for each direction d̂

has no meaning until you specify the direction d̂.

The gradient ...
At any point P, gradU

points in the direction of greatest rate of change of U wrt distance
at P, and
has magnitude equal to the rate of change of U wrt distance in
that direction.



A1 2015 12 / 1

Grad perpendicular to U constant surface

Think of a surface of constant U — the locus (x , y , z) for
U(x , y , z) = const

If we move a tiny amount within the surface, that is in any tangential
direction, there is no change in U, so dU/ds = 0. So for any dr/ds in
the surface

∇U · dr
ds

= 0 .

Conclusion is that:
gradU is NORMAL
to a surface of con-
stant U

gradU

Surfaces of constant U
"Level Surfaces"

Surface of constant U
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The divergence of a vector field
Let a be a vector field:

a(x , y , z) = a1̂ı+ a2 ̂+ a3k̂

The divergence of a at any point is defined in Cartesian co-ordinates by

div a =
∂a1

∂x
+
∂a2

∂y
+
∂a3

∂z

The divergence of a vector field is a scalar field.

We can write div as a scalar product with the ∇ vector differential
operator:

div a ≡
[̂
ı
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

]
· a ≡∇ · a
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♣ Examples of divergence evaluation

♣ a div a
1 x ı̂ 1
2 r(= x ı̂+ y ̂+ z k̂) 3
3 r/r3 0
4 rc (r · c)/r where c is constant

♣3: div (r/r3) = 0
The x component of r/r3 is x .(x2 + y2 + z2)−3/2

We need to find ∂/∂x of it ...

∂

∂x
x .(x2+y2+z2)−3/2 = 1.(x2+y2+z2)−3/2 + x

−3
2

(x2+y2+z2)−5/2.2x

= r−3 (1 − 3x2r−2)
Adding this to similar terms for y and z gives

r−3 (3− 3(x2+y2+z2)r−2) = r−3 (3− 3) = 0
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The significance of div

Consider vector field f(r) (eg water
flow).
This vector has magnitude equal to
the mass of water crossing a unit
area perpendicular to the direction
of f per unit time.
Take volume element dV and
compute balance of the flow of f in
and out of dV .

dS = dS =
j

z

x

y

dz

dx

dy

j −dxdz  +dxdz

Look at the shaded face on the left
The contribution to OUTWARD flux from surface is

f(x , y , z) · dS = [fx ı̂+ fy ̂+ fz k̂] · (−dx dz ̂) = −fy (x , y , z)dxdz .
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Look at the shaded face on the right ...

A similar contribution, but of opposite sign,
will arise from the opposite face ...
BUT! we must remember that we have
moved along y by an amount dy .
So that this OUTWARD amount is

f(x , y + dy , z) · dS = fy (x , y+dy , z)dxdz

=

(
fy +

∂fy
∂y

dy
)

dxdz

dS = dS =
j

z

x

y

dz

dx

dy

j −dxdz  +dxdz

Hence the total outward amount from these two faces is

−fydxdz +

(
fy +

∂fy
∂y

dy
)

dxdz =
∂fy
∂y

dydxdz =
∂fy
∂y

dV
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The significance of div /ctd
Repeat: Net efflux from these faces is

∂fy
∂y

dydxdz =
∂fy
∂y

dV

Summing the other faces gives a total
outward flux(

∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

)
dV = (∇ · f) dV

dS = dS =
j

z

x

y

dz

dx

dy

j −dxdz  +dxdz

Conclusion:
The divergence of a vector field represents the flux generation per unit
volume at each point of the field.

The total efflux from a volume is equal to the field divergence integrated
over the surface of the volume.
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The Laplacian: div (gradU) of a scalar field
gradU of any scalar field U is a vector field. We can take the div of any
vector field. ⇒we can certainly compute div (gradU)

∇ · (∇U) =

(̂
ı
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

)
·
((̂

ı
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

)
U
)

=

((̂
ı
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

)
·
(̂
ı
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

))
U

=

(
∂2U
∂x2 +

∂2U
∂y2 +

∂2U
∂z2

)

The operator ∇2 (del-squared) is called the Laplacian

∇2U =

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
U

Appears in Engineering through, eg, Laplace’s equation and Poisson’s
equation

∇2U = 0 and ∇2U = ρ
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♣ Examples of ∇2U evaluation
♣ U ∇2U
1 r2(= x2 + y2 + z2) 6
2 xy2z3 2xz3 + 6xy2z
3 1/r 0

Let’s check ♣3.

1/r = (x2 + y2 + z2)−
1
2

⇒ ∂2

∂x2 (x
2 + y2 + z2)−

1
2 =

∂

∂x
− x .(x2 + y2 + z2)−3/2

= −(x2 + y2 + z2)−3/2 + 3x .x .(x2 + y2 + z2)−5/2

=
1
r3

(
−1 + 3

x2

r2

)
Adding up similar terms for y and z

∇2 1
r
=

1
r3

(
−3+ 3

(x2 + y2 + x2)

r2

)
= 0
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The curl of a vector field
So far we have seen the operator ∇:

Applied to a scalar field ∇U; and
Dotted with a vector field ∇ · a.

You are now overwhelmed by irrestible urge to ...
cross it with a vector field

This gives the curl of a vector field

∇× a ≡ curl (a)

We can follow the pseudo-determinant recipe for vector products, so that

∇×a =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

ax ay az

∣∣∣∣∣∣ =
(
∂az

∂y
−
∂ay

∂z

)
ı̂+
(
∂ax

∂z
−
∂az

∂y

)
̂+
(
∂ay

∂x
−
∂ax

∂y

)
k̂
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♣ Examples of curl evaluation

♣ a ∇× a
1 −y ı̂+ x ̂ 2k̂
2 x2y2k̂ 2x2y ı̂− 2xy2 ̂

Checking ♣2 ...

∇× (x2y2k̂) =

∣∣∣∣∣∣
ı̂ ̂ k̂

∂/∂x ∂/∂y ∂/∂z
0 0 x2y2

∣∣∣∣∣∣
= ı̂x22y − ̂2xy2

= 2x2y ı̂− 2xy2 ̂
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The signficance of curl

First example gives a clue ... the field a = −y ı̂+ x ̂ is sketched below.

This field has a curl of 2k̂, which is in the r-h screw direction out of the
page.

You can also see that a field like this must give a finite value to the line
integral around the complete loop

∮
C a · dr.

y

x

y

x
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The signficance of curl

Curl is closely related to the line integral around a loop.

The curl of the vector field a represents the
the vorticity, or
the circulation per unit area in the direction of the area’s normal

where
The circulation of a vector field a round any closed curve C is defined

to be
∮
C
a · dr
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The signficance of curl /ctd

Let’s find the circulation round the perimeter of a rectangle dx by dy ...
The fields in the x-direction at bottom and
top are

ax(x , y , z) and ax(x , y+dy , z) = ax+
∂ax

∂y
dy

The fields in the y -direction at left and
right are

ay (x , y , z) and ay (x+dx , y , z) = ay+
∂ay

∂x
dx

a
y(

x
,y

,z
)

(x,y,z)ax

(x
+

d
x
,y

,z
)

a
y

y

x+dx

dy

dx

x
y

ax(x,y+dy,z)
y+dy

Summing around from the bottom in anticlockwise order

dC = + [ax(x , y , z) dx ]+[ay (x+dx , y , z) dy ]−[ax(x , y+dy , z) dx ]−[ay (x , y , z) dy ]

⇒ dC =

(
∂ay

∂x
−
∂ax

∂y

)
dx dy = (∇× a) · dxdy k̂ = (∇× a) · dS
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Some definitions involving div, curl and grad

A vector field with zero divergence is said to be
solenoidal.

A vector field with zero curl is said to be
irrotational.

A scalar field with zero gradient is said to be
constant.
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Summary
Today we’ve introduced ...

The gradient of a scalar field

The divergence of a vector field

The Laplacian

The curl of a vector field

We’ve described the grunt of working these out in Cartesian coordinates
...

We’ve given some insight into what “physical” aspects of fields they
relate too.

Worth spending time thinking about these. Vector calculus is the natural
language of engineering in 3-space.


