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Vector Algebra and Calculus

1 Revision of vector algebra, scalar product, vector product
2 Triple products, multiple products, applications to geometry
3 Differentiation of vector functions, applications to mechanics

4 Scalar and vector fields. Line, surface and volume integrals,
curvilinear co-ordinates

5 Vector operators — grad, div and curl
6 Vector Identities, curvilinear co-ordinate systems
7 Gauss' and Stokes' Theorems and extensions

8 Engineering Applications
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We started off
m being concerned with individual vectors a, b, c, and so on.

We went on

m to consider how single vectors vary over time or over some other
parameter such as arc length

In rest of the course, we will be concerned with

m scalars and vectors which are defined over regions in space

In this lecture we introduce
m line, surface and volume integrals

m definition in curvilinear coordinates
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Scalar and vector fields

If a scalar function u(r) is defined at each r
in some region

m v is a scalar field in that region.

Examples: temperature, pressure, altitude,
CO5 concentration

Similarly, if a vector function v(r) is defined
at each point, then

m v is a vector field in that region.

Examples: wind velocity, magnetic field,
traffic flows, optical flow, electric fields

FRIDAY 1300

In field theory the aim is to derive statements about bulk properties of
scalar and vector fields
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Line integrals through fields

Line integrals are concerned with measuring

m the integrated interaction with a field as you move through it on
some defined path.

Eg, given a map showing
the pollution density field
in Oxford, how much
gunk would you breath in
when cycling from college
to the Department on
different routes?
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Vector line integrals

7/1

1) Chop path L into vector segments dr;. F(r)

2) Multiply each segment by the field value at

that point in space.

3) Sum products.
Three types:

1: Integrand U(r) is a scalar
field. Integral is a vector.

I = JL U(r)dr

2: Integrand a(r) is a vector
field dotted with dr. Integral is a
scalar:

/ :La(r) - dr

or

3: Integrand a(r) is a vector
field crossed with dr. Integral is
vector.

| :JLa(r) x dr
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& Examples

Total work done by force F as it moves point from A to B along path C.
Infinitesimal work done is dW = F - dr, hence total work is

WC:J F-dr
C

Ampeére's law relating magnetic intensity H to linked current can be
written as
/ :jg H-dr
c

Force on an element of wire carrying current / when placed in a magnetic
flux density B is dF = Idr x B.
So total force on loop of wire C :

F:/jE dr x B
C

Note: expressions above are beautifully compact in vector notation, and are all

independent of coordinate system
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& Examples

Q: A force F = x?yi + xy?] acts on a body at it moves between (0, 0)
and (1,1). Find work done when the path is:
1,1

1 along the line y = x. @
2 along the curve y = x".
3 along the x axis to the point

(1,0) and then along the line

x=1

0,0 0,1
A:

In planar Cartesians r=ix+jy =dr =1dx + jdy
Then the work done is

J F-dr= J (x%yi + xy?j) - (idx + jdy) = J (x2ydx + xy?dy) .
L L L
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Example Path 1

PATH 1: For the path y = x we find that 1,1
dy = dx. So it is easiest to convert all y
references to x. @
0,0 0,1
(1,1) x=1
J (x%ydx + xy?dy) = J (x%xdx + xx?dx)
(0,0) x=0
x=1
= J 2x3dx
x=0
= X2l = 12,

NB! Although x, y involved these are NOT double integrals.
Why not?
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Example Path 2

1,1 PATH 2: For path y = x”
@) dy = nx""tdx
Again convert y references to x.

0,0 0,1

(1,1) x=1
J' (x2ydx + xy°dy) = J (x""2dx + nx""1.x.x*"dx)
(0,0) =
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Example Path 3

1,1 PATH 3: not smooth, so break into two.
Along the first section, y =0 and dy =0,
@ along second section x =1 and dx = 0:
0,0 0,1
B x=1 y=1
J (x%ydx + xy?dy) = J (x?0dx) +J 1.y%dy
A x=0 y=0

0+ [y*/3 %
= 1/3.

Line integral depends on path taken
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& Example 2

Q2: Repeat path (2), but now using the Force F = xy2i + x2y].
A2:
F- (idx +jdy) = xy? dx + x°y dy.

For the path y = x" we find that dy = nx""!dx, so
(1,1) x=1
J (xy2dx + x?ydy) = J (x> Ldx 4+ nx""1x2x"dx)
(0,0) x=0

x=1
_ J (X2n+1dX + nX2n+1dX)

x=0
_ 1 n n - 1
2n+2 2n+2 2

This is independent of n, so
This line is independent of path!
Can we understand why?
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Line integrals in Conservative fields
Write
glx,y) = x*y?/2
Then the perfect differential is

dg:a—gdx—l—a—gdy = y2xdx + x?ydy
0x oy

So our line integral
B B
[[F-de =[xt ) = | g = ga
A A

It depends solely on the value of g at the start and end points, and not
at all on the path

A vector field which gives rise to line integrals which are independent of
paths is called a conservative field
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Some questions about conservative fields

One sort of line integral performs the integration around a complete loop.
It is denoted §

1 If E is a conservative field, what is the value of § E-dr?
2 If E; and E, is conservative, is E; + E5 conservative?
3 Later we show that the electric field around a point charge q

f

E=Kq— K = 1/4me,€q
r

is conservative. Are all electric fields conservative?

4 If E is the electric field, the potential function is

¢:—JE~dr.

So are all electric fields conservative?
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Line integrals & parametrized curves

& Example 1: A
Q: Evaluate [F - dr when F = 2t + y%j + xyk from (0,0,0) to (1,1,1)

along the space curve x =p, y = p?, z = p>.

A:
F = pi+pY+pk
dr = dxi+dyj+ dzk
= dpi + 2pdpj + 3p?dpk
p=1
JF-dr = J (p3dp + 2p°dp + 3p°dp)
p=0
=1
= [(1/4)p* +(5/6)p°|)_,
= (26/24) .

p=7

Suppose the integral was from (0,0,0) to (—2,4,—8) ... p?
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Line integrals & parametrized curves /ctd

Above, [ F - dr boiled down to working out some straightforward
J F(p)dp. So, while the following don't appear to involve vectors, they
could be the last stage in a vector integral ...

& 2:

Consider
/ :J- F(x,y,z)ds ,
L

where the path L is the curve defined as x = x(p), y = y(p), z = z(p).
First, convert the function to F(p), writing

Pend ds
/ :J Flp) o db
p

Pstart

2 2 2
where (from Lec 3) Z—; = [(j;) + (ZZ) + (j;) ]

Then do the (now straightforward) integral w.r.t. p.

1/2
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Line integrals & parametrized curves /ctd

| = JL F(x,y,z)ds

& 3: Suppose parameter is arc-length s and
the path L is x = x(s), y = y(s), z = z(s).
Convert the function to F(s), writing

Send
/ :J F(s) ds

Sstart

& 4: If pisx —soy =y(x) and z = z(x) (or similar for p=y or p = z)

= Jxend F(x)

Xstart

1/2

dy\> [dz\?
1+(dx) +(d)] dx .
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Surface integrals

Surface S is divided into infinitesimal vector x
elements of area dS: ds
m the dirn of the vector dS is the surface
normal
m its magnitude represents the area of
the element.
Again there are three possibilities:
1: [ UdS — scalar field U; _
vector integral. 3: [sa x dS — vector field a;

2: [ga-dS — vector field a; vector integral.
scalar integral.
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Physical example of surface integral

m Physical examples of surface integrals a
often involve the idea of flux of a vector dsS
field through a surface

[aas ‘\

m Mass of fluid crossing a surface element
dS at rin time dt is

dM = p v - dSdt

Total rate of gain of mass can be
expressed as a surface integral:

Cij—l\: = L p(r)v(r) - dS

Note that expression is free of any coordinate system
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& Example

Q: Evaluate [ F - dS over the x = 1 side of the cube shown in the figure
when F = yi+ zj + xk.

A: dS is perp to the surface. Often, the surface will enclose a volume:
the surface direction is everywhere out of the volume

For the x = 1 face of the cube,

dS = dydz z
A 4s
Lr-ds - ”(y?+zj+x|2).dydzf Y ﬁ__’
y=1 rz=1
B L_o J'z:O yelydz 1 = X
_ %y2|(1)z|(1) dS =dydz 4

= 1/2 .
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Volume integrals

The definition of the volume integral is again taken as the limit of a sum
of products as the size of the volume element tends to zero.

One obvious difference though is that the element of volume is a scalar.

The possibilities are:

1: [, U(r)dV — scalar field; scalar integral (1P1 stuff!)

2: [\, a(r)dV — vector field; vector integral. In this case one can treat
each component separately.

J adV
v

J al(x,y,z)?dV-i—J az(x,y,z)jdV—i-J a3(x,y,z)lA(dV
v v

v

= ?J al(x,y,z)dV—}—jj az(x,y,z]dV—}—lA(J az(x,y, z)dV
v v v

So, 3x 1P1 stuff.
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Changing variables: curvilinear coordinates

Before dealing with further examples of line, surface and volume integrals
it is important to understand how to convert an integral from one set of
coordinates into another

You saw how to do this for scalar volume integrals in 1P1 (and we've
seen that volume integrals can always be handled as scalars)

— but we need to understand where Jacobians came from, and how we
can apply the mechanism more generally.

You will find the general problem slightly heavy going

— the better news is that later we specialize to the standard set of polar
coordinate systems
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Changing variables: curvilinear coordinates

The line integral in Cartesian coordinates uses

r=xi+yj+zk and dr = dxi + dyj + dzk

You can be sure that length scales are properly handled because
|dr| = ds = \/dx2 + dy? + dz2.
But often symmetry screams at you to change coordinate system:
m likely to be plane, cylindrical, or spherical polars,

m but can be something more general like “u, v, w"
— a curvilinear coordinate system

Now the bad news: Length scales are screwed up
r # ul+v0+ ww

dr # dul+ dvo+ dww
drl=ds # /du?+dv2+dw? .
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Finding the length scales

Consider the transform to u, v where x = x(u, v) and y = y(u, v)

We write lines of constant x ThES 65 CaRsEm Y

r=x(u,v)i+y(u v)j Yot YT ;

And beé:ause 5

X X
dx = adu + afdv
0 0

dy = a—idu n a—yd . s

0 0 0 0
we can write dr = (al)jdu + a\idv) T+ <aydu + a—yd >j

ox, Oy, O0x,. Oy,

= h, 0 du + h, ¢ dv

h, and h, are called metric coefficients
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Metric coefficients, ctd
To repeat, the metric coefficients appear in

dr = al?+alj du + %?—i—afyj dv
u u ov ov

+ h, ¢ dv

Il
>
<
=
Q.
<

h, . are the factors that turn the du, dv, or whatever, into proper lengths.
But we can also write

or or or or
dr—adU‘f—adV ihuo—a & h\,V—a

As 0 has to be a unit vector, we find that

(@@

e
YT 9u

and similarly for ¢
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We can tie this in with tangents

If we write the position vector as lines of constant v
r=x(u,v)i+y(u, v)j
we find the tangent to a v-constant

curve as

LI Y 12
du du auJ

@ This is like dr/dp but is partial because there are two parameters
and v is being held constant!

But v is not arclength, so or/du will not be a unit tangent, rather

or or
a = huﬁ , SO h,_, = ‘au

and similarly for 9. Exactly what we derived before!
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To summarize ...

These ideas extend to n-vectors without need for further proof.

Summary

~

r=x(u,v,w)i+y(u v, w)j+ z(u, v, w)k

dr = h,dutt + h,dv0® + h,dww

or or or
u=—|Aa_ hvzi hwzi
ou ov ow
1/2
o _[(ox) (), (22)]”
dul| ou ou ou

and similarly for others.

28 /1
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Surface integrals and curvilinear coordinates

The surface element is a vector product lines of constant v
dS; = (dyj) x (dzk)
In curvi coords
dS,, # (du) x (dv?)

Locally the surface element is planar, so

or or
ds,, = adu X adv
= h,dul x h,dve

The general 3D result for dS,, in (u, v, w) coords is
dS,, = hyh,dudv(0 x Q)

For an orthogonal curvilinear coord system, 0 x ¢ =W and

dS,, = hy,h, dudvWw
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Surface integrals and curvilinear coordinates /ctd

The general 3D result for dS,, in (u, v, w) coords is

dSy, = huhydudv(a x 9)

For an orthogonal curvilinear coord system, 6 X ¢ = W and

dS,, = hyh,dudvw

In the (x,y) — (u, v) plane we arrive at a familiar result:

ds = (g’;wr gi;) x (gtw gi;) dudy
i 7 k
= | x, ys 0 |dudv
Xy Yv 0
ox ox n
= ‘ gu 8y ‘ dudv k
ou ov

Out pops the Jacobian!
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Volume integrals and Curvilinear Coordinates

or
What is the size of the volume (aT,.,)
element in curvilinear coordinates?

It is the volume of a parallelopiped,
which in an earlier lecture we saw
was given by the scalar triple
product.

Hence

dv = ﬂdu X gdv . Ech = h,h, h, dudvdw( x 9) - W
ou ov ow

You can show that this is also the Jacobian: g((:"}/"fv])
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Volume integrals and Curvilinear Coordinates

To repeat:

dv = (ardu X ardv> o dw = huhy by dudvdw(a x 9) - W
ou ov ow

General 3D result

dV = hyhyhy, du dv dw (0 x 0) - W = ‘aa(xyz))‘ du dv dw

(u,v,w

Short cut if the system is orthogonal

dV = h,h,h, dudv dw
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The Polars

33/1

Some curvilinear coordinate systems are orthogonal, meaning that Q, ¢
and W are mutually perpendicular, so that

OX0=wW and (ax0)-w=1

We look at
m plane polars

m cylindrical polars

m spherical polars <<’
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Plane polar co-ordinates

S=%

Start from the position vector: .
dS = rdrdbék

r = xi+yj=rcosBi+ rsin0j P
0
ht = <L — (cos6i+ sin6j)
or
ho — O (—rsin6i+ rcosj)
00 = 55 = (-rsinBi+rcosd
0
= h = ‘r‘:|c059?+sin6j|=l
or
he = g—g = |—rsin®i+ rcosOf = r
f = (cos0i+ singj)
6 = (—sin6i+cosh))

=dr = h drt+hgd0b=dre+rdob.
and dS = h,hodrd6 (# x 8) = rdrdok .
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Cylindrical polar coordinates

z
z .
Lines of
constant r

Lines of
constant z

[\
A

AN

/ Lines of
X constant ¢

x=rcosd, y=rsind, z=z

Position vector R = x1+ yj + zk = rcos O+ rsindj + zk

Why change the notation of position vector from r to R?
If we did not, r would not equal |r|, and ? would not be in same dirn as r.
This could be confusing.
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Cylindrical polars /ctd

R = rcosdpi+rsin d)j—i—zlA(
h,t = OR/0r = (cos i+ sin ¢j)
hq)(f) = 0R/9¢p = (—rsin di + rcos dj)
h,z = 0R/dz=k
= h, = 1 and f = cosdi+ sindj
hy = r and § = —sindi+ cosdj
h, = 1 and 2=k
=dR = dret+rdd $+dzz
and dS, = hyh,dddz(P x2)=r dd dz ¢

dS¢ = hyh.dzdr(2 x#) =dz dr &
dS, = hhpdrdd(P x 2) = rdrd p2z
dV = rdrdd dz
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& Example: Line integral in cylindrical polars
From the list: change in position vector is dR = dr # + rdd ¢ + dz 2

Q: Evaluate §-a- dR, where a = x*j — y3i + x2yk and C is the circle of
radius p in the z = 0 plane, centred on the origin.

A: Turn ainto cp's )
a = p3(—sin® di + cos® ¢j + cos? ¢ sin Ppk) P
Since dz = dr = 0 on our particular path,

and the constant r = p,

dR =p dd d = pdd(—sin di+ cos ¢j)

so that 3 -
dl =:rdog

27 :
4; a-dR = J p*(sin* ¢p4cos* b)dd = %Tp“ s
c 0

NB! For line integrals you will often see the element along the path
written as d€ (or dr). Just roll with it ...
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Surface integrals in cylindrical polars

Reminder ...
dS, = rdrdgs Cylindrical polars:
z Often-used surface area elements
..... are:
RN rd%/gf? R
n dS, = drtxrddb=rdrddz

dS, = rddpd xdzz=rddpdz?

dS, = rdpdzé

=
drt

dSy = drdz |

Less often needed is

e dSy = h:h,dzdr(2 x ) = dz dr &
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& Example: Surface integral in cyl polars

Q: Find Is" - dS when v = y?i + x?J and the surface S is a cylinder of
radius a and height h whose base sits on the x, y plane and whose axis
coincides with k.

A: v has zero k component, so there is no contribution from the top
(where dS = +r dr dok) or bottom (dS = —r dr ddk).
From the wall of the cylinder

h 27
Jv~dS:J J (a®sin? ¢i + a® cos® ¢]) - (add dzP)
z=0J¢p=0
But # = cos &f + sin ¢j, so
h 27
J'v'dS = 33J J (sin? ¢ cos ¢ + cos?® ¢ sin ¢)dd dz

z=0Jp=0
3

%h [sin® ¢ — cos® c]))]i7T = @

Can we see why zero? ...
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Surface integrals in cylindrical polars

... plot the vector field v = y?i + x?] from above. The red ring is the
cylinder.

0.81

0.6

0.4

0.2

As much v flows in as flows out, and fv - dS is the net outflow or efflux.
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Surface integrals in cylindrical polars

Q: Find [5v-dS when v = xi+ yj and the surface S is a cylinder of
radius a and height h whose base sits on the x, y plane and whose axis
coincides with k.

A: v has zero k component, hence there is no contribution from the top
and bottom.
From the wall of the cylinder

Jv~d$ —Jh rn (acosdi+ asindj) -add dzp

z=0Jp=0

But # = cos ¢ + sin ¢j, so

h 27
Jv-dS = aQJ J
z=0J$=0

= 2mha®

Can we see why finite and positive? ...
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Surface integrals in cylindrical polars

... plot the vector field v = x1+ yj. The red ring is the cylinder ...

0.5

L L L L L L
-15 -1 -05 0 05 1 15

Jv-dS is the net efflux — clearly positive
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Volume integrals in cylindrical polars
Ay dd dV = dxdydz

dV = rdrd¢dz

In Cartesians, volume element given by
dV = dxi- (dyj x dzk) = dx dy dz
In cylindrical polars, volume element given by
dV =drt- (rddd x dzz) = rdd dr dz

NB: Volume is scalar triple product, hence:

Afdr % giy 5=

dV =| prdd |=| & 3% 2% |drdddz
2dz x 9y 2z
0z 0z 0z




Al 2015

44 /1

Spherical polars

z

z
9 ~ Lines of
. constant ¢
. (longitude) _—

Lines of
constant r

"\ Lines of
\__— constant
(latitude)

rsin@cosd, y=rsinOsindp, z=rcosHd
x?+yj+z|A(
rsin 0 cos 1 + rsin O sin ) + r cos Ok
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Spherical polars /ctd

r

= h,t
he®
hyd
= h,
= ¢

dSe

dv

rsin 0 cos 1+ rsin O sin o + r cos Ok
or/or =

or/00 =

or/odp =

1, hg=rsin®, hy=r

sin® cos i+ sinO sindpj+ cos Ok
cos O cos Pi+ cosO sin d)j—sinE)IA(
—sinBi+cosd

dr #4rd0 6 +rsin® do d

r? sin® do do P

(7] dr do 6

rdrdd ¢  on planar hemisphere surface
r? sin® dr do d¢

on spherical surface

on conical surface: DIY
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Surface integrals in spherical polars

Three possibilities, but most useful are surfaces of constant r
The surface element dS, is given by

ds, hod08 x heddpd

% sin 0d0d

2 . n
rsin8dog

dS, = r?sin 0dodpr
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& Example: Surface integral in spherical polars

Q: Evaluate fs a-dS, where a = z3k and S is the sphere of radius A
centred on the origin.

A: In general:
z=rcosb dS = r?sin 0dod i

On surface of the sphere, r = A, so that

A A

a = z2°k = A3cos30k dS = A%sin0 do dodr

Hence
27T 7T R
Ja-dS = J J ABcos30 A%sin0 [k - ] dOdd
S $=0J6=0

27 7T
A5J do J cos30 sin O[cos 0] dO
0 0

1 T 47'[A5
27TA5§ [— cos® 0], = 5
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Volume integrals in spherical polars

drt
Z ~
rsin@dog
rsiné .
rdoo
S =74V = r2sin6drdode
y
X )

dp “—Tsinfd¢
m Volume element given by

dV = drt.(rd00 x rsin0ddpd) = r?sin 0drd0d

m Note again that this volume could be written as a determinant
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Summary

m We introduced line, surface and volume integrals involving vector
fields.

m We defined curvilinear coordinates, and realized that metric
coefficient were necessary to relate change in an arbitrary coordinate
to a length scale.

m We showed in detail how line, surface and volume elements are
derived, and how the results specialized for orthogonal curvilinear
system, in particular plane, cylindrical and spherical polar
coordinates.

m Working stuff out from first principles has been hard going: as the
examples showed, application is much easier!




