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Vector Algebra and Calculus

1 Revision of vector algebra, scalar product, vector product
2 Triple products, multiple products, applications to geometry
31 Differentiation of vector functions, applications to mechanics

4 Scalar and vector fields. Line, surface and volume integrals,
curvilinear co-ordinates

5 Vector operators — grad, div and curl
6 Vector Identities, curvilinear co-ordinate systems
7 Gauss' and Stokes' Theorems and extensions

8 Engineering Applications
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More Algebra & Geometry using Vectors

In which we discuss ...

m Vector products:
Scalar Triple Product, Vector Triple Product, Vector Quadruple
Product

m Geometry of Lines and Planes
m Solving vector equations

m Angular velocity and moments
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Triple and multiple products

Using mixtures of scalar products and vector products, it is possible to
derive

m “triple products” between three vectors

m n-products between n vectors.

Nothing new about these
— but some have nice geometric interpretations ...

We will look at the
m Scalar triple product
m Vector triple product

m Vector quadruple product
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Scalar triple product a- (b x c)

Scalar triple product given by the true determinant

dy d2 as
a-(bxc)=| by by b3
C1 Co C3

Your knowledge of determinants tells you that if you
m swap one pair of rows of a determinant, sign changes;

m swap two pairs of rows, its sign stays the same.

Hence
(i) a-(bxc)=c-(axb)=b-(cxa) (Cyclic permutation.)
(i) a- (b x ) =—b-(a x c) and so on. (Anti-cyclic permutation)

(iii) The fact that a- (b x ¢) = (a x b) - ¢ allows the scalar triple product
to be written as [a, b, c].
This notation is not very helpful, and we will try to avoid it below.
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Geometrical interpretation of scalar triple product

The scalar triple product gives the volume of the parallelopiped whose
sides are represented by the vectors a, b, and c.

Vector product (a x b) has magnitude
equal to the area of the base x height
in direction perpendicular to the base.

The component of c in this direction is equal to the height of the
parallelopiped, hence

volume of parallelopiped = |(a x b) - ¢|
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Linearly dependent vectors

If the scalar triple product of

three vectors n
a-(bxc)=0 b
Cc
then the vectors are linearly
dependent. a

a=Ab+ puc

You can see this immediately either using the determinant

— The determinant would have one row that was a linear combination
of the others

or geometrically for a 3-dimensional vector.

— the parallelopiped would have zero volume if squashed flat.
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Vector triple product a x (b x c)

a x (b x c) is perpendicular to (b x c) bxc
but (b x c) is perpendicular to b and c. .

So a x (b x ¢) must be coplanar with b and
b
C. é
=ax (bxc)=Ab+ nuc ax (bx c)

(ax(bxc)); = axbxc)s—aszbxc)

az(bicz — bacy) + az(bicz — bscy)

(a2c2 + asc3) by — (a2b2 + asbs)cr

(a1c1 + axco + azcz)by — (a1by + a2ba + azbz)c
= (a-c)by—(a-b)a

a
f In arbitrary direction

Similarly for components 2 and 3, so

ax(bxc)=(a-c)b—(a-b)c
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Projection using vector triple product

Books say that the vector projection of any
vector v into a plane with normal A is
VIN PLANE = A X (v X fi)

We would say that the component of v in the A
direction is v - fi, so the vector projection is
VIN PLANE =V — (V- A)A

Can we reconcile the two expressions? (Yes we can.)
Subst. A < a, v+ b, A « c, into our earlier formula

ax(bxc) = (a-c)b—(a-b)c
Ax(vxh) = (A-A)v—(A-v)A

Fantastico! But v — (v - A)A is much easier to understand ...
. and cheaper to compute!
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Vector Quadruple Product (a x b) x (c x d)

We have just learned that

px(gxr) = (p-rjg—(p-q)r
= (axb)x(cxd) = 77

Regarding a x b as a single vector
= vgp must be a linear combination of ¢ and d

Regarding ¢ x d as a single vector
= vgp must be a linear combination of a and b.

Substituting in carefully (you check ...)

(axb)x(cxd) = [(axb)-dlc—[(axb)-cld
and also = [(cxd)-alb—[(cxd)-bla
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Vector Quadruple Product /ctd

Using just the R-H sides of what we just wrote ...

[(@axb)-cJd=[bxc)-dla+[(cxa)-db+[(axb)- -dc

So
[(bxc)-dla+[(cxa)-dlb+[(axb)-dc
d =
[(axb)-c]
= oa+pb+vyc .
a
Oh, we saw this yesterday ... ... the d

projection of a 3D vector d onto a
basis set of 3 non-coplanar vectors is
UNIQUE.

1 /1
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& Example
Q:

Use the quadruple vector product to express the vector d = [3,2,1] in
terms of the vectorsa=1[1,2,3], b=1[2,3,1] and c = [3, 1, 2].
A:

[((bxc)-dla+[(cxa)-dlb+[(axb)-dc
[(@axb)-c]

So, grinding away at the determinants, we find
m(axb)-c=-18and (bxc)-d=6
m (cxa)-d=-12and (axb)-d=-12.
So

d:

1
d = T8(6a —12b — 12¢)

= %(—a+2b+2c)
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Geometry using vectors: Lines
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Equation of line passing through

point a; and lying in the direction of UL

vector b is

r=a+ f3b

Point r traces
out line.

NB! Only when you make a unit vector in the dirn of b does the

parameter take on the length units defined by a:
r=a+Ab
For a line defined by two points a; and a;
r=a;+p(ax —ay)
or the unit version ...

r=a;+A(ax—aj)/lax —a;
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The shortest distance from a point to a line

Vector p from c to ANY line point r is

p=(r—c)=a+Ab—c=(a—c)+Ab

which has length squared

p>=(a—c)>+A>+2\(a—c)-b.
Easier to minimize p? rather than p itself.

d 5 _ _
ﬁp =0 when A=—(a—c)-b.

So the minimum length vector is p = (a—c) — [(a—c) - b]b.

No surprise! It's the component of (a — c) perpendicular to b.
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Shortest distance between two straight lines

Shortest distance from point to line is along the perp line

= shortest distance between 2 lines is along mutual perpendicular.

The lines are:
r=a+Ab r=c+pud

The unit vector along the mutual perp is

LT
Cbxdl

(Yes! Don't forget that b x d is NOT a unit vector.)

The minimum length is therefore the component of (a — c) in this

direction
o). (B3
bxd /|

Pmin =
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& Example

Q: for civil engineers who like pipes

Two long straight pipes are specified using
Cartesian co-ordinates as follows:

Pipe A: diameter 0.8; axis through points
(2,5,3) and (7,10, 8).

Pipe B: diameter 1.0; axis through points
(0,6,3) and (—12,0,9).

Do the pipes need re-aligning to avoid
intersection?

16 / 1
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A: Pipes A and B have axes:
ra = [2,53+N[5,5,5] =[2,5,3]+A[1,1,1]/V3
rg = [0,63]+u[—12,—6,6] =[0,6,3] + u[—2, —1,1]/vV6
[0,6 (7,10,8]

Non-unit perpendicular to both axes is

/

[-12,0,9]

i
p=| 1 1
—2 -1

=[2,-3,1]

— =X

\12,5,3]

The length of the mutual perpendicular is

=1.87.

‘(a ). 2731 ’ _2,-1,00-12,-3,1]

Via Vid

Sum of the radii of the pipes is 0.4 + 0.5 =0.9. =no collision

17 /1
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Three ways of describing a plane. Number 1

1. Point 4+ 2 non-parallel vectors

If b and c non-parallel, and a is a point on the plane, then

r=a+ Ab+ puc
where A, 1 are scalar parameters.

\:\‘\ NB that these are
0} " /b

parallel to the plane, not
necessarily in the plane
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Three ways of describing a plane. Number 2

2. Three points
Points a, b and c in the plane.

r=a-+A(b—a)+ pu(c—a)

0]
Vectors (b —a) and (c — a) are said to span the plane.
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Three ways of describing a plane. Number 3

3. Unit normal Unit normal to the
plane is A, and a point in the plane
isa a

(0]
Notice that |D| is the perpendicular distance to the plane from the origin.
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The shortest distance from a point to a plane

The planeisr-i=a-A=D
Now, the shortest distance from point d to the plane ... 7

1 Must be along the
perpendicular

2 d + Af must be a point
on plane
= (d+AA)-A=D
= A=D-d-n
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Rotation, angular velocity and acceleration

A rotation can represented by a
vector whose

®
m direction is along the axis of

rotation in the sense of a
right-handed screw,

m magnitude is proportional to
the size of the rotation.
The same idea can be extended to the derivatives

m angular velocity w

m angular acceleration .

The instantaneous velocity v(r) of any point P at r on a rigid body
undergoing pure rotation can be defined by a vector product

V=W Xr.
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Vector Moments

Angular accelerations arise because
of moments.

The vector equation for the moment
M of a force F about a point @ is

M=rxF

where r is a vector from Q to any
point on the line of action L of force
F.

The resulting angular acceleration  is in the same direction as the
moment vector M. (How are they related?)
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Solution of vector equations

Find the most general vector x satisfying a given vector relationship.
Eg
x=xxa+b

General Method (assuming 3 dimensions)

1 Set up a system of three basis vectors using two non-parallel
vectors appearing in the original vector relationship. For example
a, b (axb)

2 Write
x=Aa+ub+vaxb

where A, 1, v are scalars to be found.

3 Substitute expression for x into the vector relationship to determine
the set of constraints on A,u, and v.
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& Example 1: Solve x = (x x a) + b.

Step 1: Basis vectors a, b and vector product a x b.
Step 2: x =Aa+ pb +va x b.
Step 3: Stick x back into the equation ...

Aa+ub+vaxb

(Aa+pb+vaxb)xa+b
O+ubxa)+viaxb)xa + b
But (axb)xa=a’b—(a-b)a
Aa+pub+vaxb=—v(a-bla+ (va®+1)b—p(axb)
Equating coefficients of a, b and a x b in the equation gives
A=—v(a-b) p=va®+1 v=—pn
= nu=1/(1+a% v=-1/(1+a% A=(a-b)(1+a%).

So finally the solution is the single point:

=113 ——l(a-b)a+b—(axb)]
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& Example 2: Solve x-a=K

This is in 2A1A, but we want to think around it ...

First note that there are not two fixed vectors in the expression ...
A:

Step 1 Use a, and introduce an arbitrary vector b, then find a x b
Step 2: x =Aa+ pb +va x b.

Step 3: Bung x back into the equation!

... GRIND AWAY ...

and, recalling A and v are free parameters, we find

K — A&?

x7\a+[ b a

}bﬂ—vaxb
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& Example #2: x-a=K

K —Aa?

x:?\a+[ b a

} b+vaxb
This is certainly correct ... but it looks very odd, given that the geometry
is very obvious in this case!
x must lie on the plane x-a = K/a ...

. a plane with unit normal & and perpendicular distance |K/al from the
origin.
So why does it look so complicated?

It is because b has been chosen arbitrarily and is one of the basis vectors.
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& Example 2: x-a=K

As we can see upfront that this must be a plane,
here is a cunning plan ...

Choose b arbitrarily, but don't use b as the second vector

Instead use it to find a second vector that is
perpendicular to BOTH a AND (a x b).

We can write down without further thought

x:§a+u(ax(axb))+v(a><b). W, v are free

Can you see why?
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A comment about solving vector identities

Suppose you are faced with

pa+Ab=c
and you want to find p.
What is the fast way of getting rid of b?
Use (b xb) =0 ...

uaxb) = cxb
=ulaxb)-(axb) = (cxb)-(axb)
(cxb)-(axb)
(axb)-(axb)
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A comment about solving vector identities

pa+Ab=c
An alternative is to construct two simultaneous equations

pwa-b+Ab> = c-b
ua’+Aa-b =

and eliminate A

_ (a-b)(b-c)—(a-c)b?
b T @ b2 — 22

Compare with previous




A1 2015 31 /1

Summary

We've discussed ...
e Vector products e Line & Plane geometry

e Angular velocity/moments e Solving vector equations

Key point from Lectures 1 and 2:

@ Use vectors and their algebra “constructively” to solve problems.
(The elastic collision was a good example.)

@ Don't be afraid to produce solutions that involve vector operations.
Eg: w=a-b/|c x al. Working out detail could be left to a
computer program.

@ Run with natural coordinate systems.

@ |f you are constantly breaking vectors into their components, you are
(probably) not using their power.

@ Apply checks that equations are vector or scalar on both sides.
(Underline vectors.)




