
A1 2015 1 / 1

A1 Vector Algebra and Calculus

Prof David Murray

david.murray@eng.ox.ac.uk
www.robots.ox.ac.uk/∼dwm/Courses/2VA

8 lectures, MT 2015
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Vector Calculus & Scalar Fields
Think about some scalar quantities
— mass M, length L, time t, temperature T , etc

If r = [x , y , z ] is a position in space, T (r) is a scalar field

T might be time-varying — the field is T (r, t)

Keep y , z , t constant. What is δT when
you move δx?

δT =

(
∂T
∂x

)
δx .

But suppose you moved off in a direction
n. Would you multiply

δT =
∂T
∂n
δn ?

x y

z

Does ∂T/∂n exist — is it a vector or a scalar?
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Vector Calculus & Vector Fields

A vector quantity v(r) that has a value at every r in a region is a
vector field.

Examples are:
— The electric field E(r) around stationary charges
— The unsteady fluid velocity field v(r, t) in a stream.

Local stream velocity v(r, t) can be viewed
using:
— laser Doppler anemometry, or by
dropping twigs in, or diving in ...

You’ll be interested in
weirs (acceleration), &
vortices (curls)
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Contents

1 Revision of vector algebra, scalar product, vector product.

2 Triple products, multiple products, applications to geometry.

3 Differentiation of vector functions, applications to mechanics.

4 Scalar and vector fields. Line, surface and volume integrals,
curvilinear co-ordinates .

5 Vector operators — grad, div and curl.

6 Vector Identities, curvilinear co-ordinate systems.

7 Gauss’ and Stokes’ Theorems and extensions.

8 Engineering Applications.
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Learning Outcomes

comfort with expressing systems using vector quantities

manipulating vectors as “atomic” entities without recourse to
underlying coordinates

sound grasp of the concept of a vector field

ability to link this idea to descriptions various physical phenomena

intuition of the physical meaning of the various vector calculus
operators (div, grad, curl)

ability to interpret the formulae describing physical systems in terms
of these operators
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Reading

J Heading, "Mathematical Methods in Science and Engineering",
2nd ed., Ch.13, (Arnold).

G Stephenson, "Mathematical Methods for Science Students", 2nd
ed., Ch.19, (Longman).

E Kreyszig, "Advanced Engineering Mathematics", 6th ed., Ch.6,
(Wiley).

K F Riley, M. P. Hobson and S. J. Bence, "Mathematical Methods
for the Physics and Engineering" Chs. 6, 8 and 9 (CUP).

A J M Spencer, et. al. "Engineering Mathematics", Vol.1, Ch.6,
(Van Nostrand Reinhold).

H M Schey, “Div, Grad, Curl and all that”, Norton
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Course WWW Pages

Pdf copies of

these oheads

lecture notes (also large print),

tutorial sheets (also large print)

FAQs etc

will be accessible from
www.robots.ox.ac.uk/∼dwm/Courses/2VA

If something is really not clear, and you are really stuck,

email david.murray@eng.ox.ac.uk

and the reply (if generally useful) will get stuck on the web FAQs.
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A1 Vector Algebra and Calculus

1 Revision of vector algebra, scalar product, vector product

2 Triple products, multiple products, applications to geometry

3 Differentiation of vector functions, applications to mechanics

4 Scalar and vector fields. Line, surface and volume integrals,
curvilinear co-ordinates

5 Vector operators — grad, div and curl

6 Vector Identities, curvilinear co-ordinate systems

7 Gauss’ and Stokes’ Theorems and extensions

8 Engineering Applications
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Vector Algebra

In which we explore ...

Free, sliding and position vectors

Coord frames and Vector components

Equality, magnitude, Addition, Subtraction

Scalar products, Vector Projection, Inner products

Vector Products
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But first, some notation

We will use bold font for vectors a,b . . .α,β . . .
and non-bold to for their magnitudes a, b . . .α,β . . .

In written work, underline your vectors.
It is a way of avoiding chaos.

Woolly hats are worn by unit vectors â, b̂ . . . α̂, β̂ . . .

Here are some trios of unit vectors we will use

(̂ı, ̂, k̂) (̂l, m̂, n̂) (r̂, φ̂, ẑ) (r̂, θ̂, φ̂)

a> denotes the transpose of a vector

mag and dirn are occasional shorthands for magnitude and direction
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Vectors

In linear algebra, vectors can be treated as abstract lists of numbers.

In this course we are concerned with vectors as representations of
physical quantities that possess magnitude and direction.

There are three slightly different types of vectors:

Free vectors: Only mag & dirn are important. Can translate at will.

Sliding vectors: Line of action is important (eg. forces for
moments). Vectors can slide with 1 degree of freedom.

Bound or position vectors: “Tails” all originate at origin O.

r r
2 3

O

r
1

Free vectors Sliding vectors Position vectors
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Coordinate frames

An advantage of vector algebra:
— frees analysis from arbitrarily imposed coordinate frames.

Eg, two free vectors are equal if mags and dirns
are equal. Can be done with a drawing
independent of any coordinate system.

Try to spot things in the notes that are independent of coordinate system.

However, coordinate systems are useful,
so introduce the idea of vector components.
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Vector components in a coordinate frame

In a Cartesian coordinate frame

v = [v1, v2, v3] = [x2 − x1, y2 − y1, z2 − z1]

Define ı̂, ̂, k̂ as unit vectors in the x , y , z dirns

ı̂ = [1, 0, 0] ̂ = [0, 1, 0] k̂ = [0, 0, 1]

then
v = v1̂ı+ v2 ̂+ v3k̂ .

x
2

x
1

1

2

3

i

j

v
v

v

v

k
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Vector equality

Two free vectors are said to be equal iff their lengths and directions are
the same.

Using coordinates, two n-dimensional vectors are equal

a = b iff a1 = b1, a2 = b2, . . . an = bn

This applies to position vectors too.

But for sliding vectors we must add
the line of action must be the same.
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Vector magnitude and unit vectors

Provided we use an orthogonal coordinate system, the magnitude of a
3-vector is

a = |a| =
√

a2
1 + a2

2 + a2
3

and of an n-vector

a = |a| =
√∑

i

a2
i

To find the unit vector in the direction of a, simply divide the vector by
its magnitude

â =
a
|a|

.
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Vector Addition and Subtraction

Vector addition follows the parallelogram construction (coord free), but if
you like components ...

Vectors are added by adding corresponding components

a+ b = [a1 + b1, a2 + b2, a3 + b3]

Subtraction is a+ (−b)

k

i j

a a−b

b

a+b

a+b

c
b

a

b+c

c
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Properties of addition/subtraction

The following results follow immediately from the above definition of
vector addition (incl. subtraction).

a + b = b + a
(it commutes)

(a + b) + c = a + (b + c) = a + b + c
(it associates)

a + 0 = 0 + a = a
where the zero vector is 0 = [0, 0, 0].

a + (-a) = 0
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Multiplication of a vector by a scalar

NOT the scalar product!

Just as for matrices, multiplication of a vector a by a scalar c is defined
as multiplication of each component by c , so that

ca = [ca1, ca2, ca3].

It follows that:

|ca| =
√

(ca1)2 + (ca2)2 + (ca3)2 = |c ||a|.

The direction of the vector will reverse if c is negative, but otherwise is
unaffected.

A vector where the sign is uncertain is called a director.
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♣ Example
The electrostatic force on charged particle Q due to another charged
particle q1 is

F = K
Qq1

r2 r̂ = K
Qq1

r3 r where constant K =
1

4πεrε0

where r is the vector from q1 to Q.
Q: Write down an expression for the force on Q at R due to N charges qi
at ri , i = 1, . . . ,N.

A: The vector from qi to Q is (R− ri ).
The unit vector in that direction is
(R− ri )/|R− ri |, so

F(r) =
N∑

i=1

K
Qqi

|R− ri |3
(R− ri )

q i

r
i

R

Q

Notice that we are thinking algebraically about vectors — not fussing
about their components. Not a coordinate system in sight.
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Scalar or Dot product

The scalar product of two vectors results in a
scalar quantity:

a · b = a1b1 + a2b2 + a3b3 .

Note that
a · a = a2

1 + a2
2 + a2

3 = |a|2 = a2.

These properties of the scalar product follow immediately:

a · b = b · a
(it commutes)

a · (b+ c) = a · b+ a · c
(it distributes w.r.t vector addition)

(λa) · b = λ(a · b) = a · (λb)
(scalar multiple of a scalar product of two vectors)
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Geometrical interpretation of scalar product

Consider the square magnitude of the vector (a− b).

|a− b|2 = (a− b) · (a− b) = a · a+ b · b− 2(a · b)
= a2 + b2 − 2(a · b)

The cosine rule says length AB2 is
|a− b|2 = a2 + b2 − 2ab cos θ

Hence
a · b = ab cos θ,

independent of the coord system.

θ

b

B

a−b

a
A

O
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Projection of one vector onto the other

θ

b

direction of a
Projection of b onto

a

b · â = b cos θ is the component of b in the
direction of a.

a · b̂ = a cos θ is the component of a in the
direction of b.

Projection is v. useful when the second vector is a unit vector.

a · ı̂ is the magnitude of the component of a in the direction of ı̂.

(a · ı̂)̂ı is the vector component of a in the direction of ı̂.

To get the vector component of b in the dirn of a

(b · â)̂a =
1
a2 (b · a)a .
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Orthonormal vectors and coordinates

In the particular case a · b = 0, the angle between the two vectors is a
right angle.

The vectors are said to be orthogonal — neither has a component in the
direction of the other.

In 3D, an orthogonal coordinate system is characterised by

ı̂ · ı̂ = ̂ · ̂ = k̂ · k̂ = 1

and
ı̂ · ̂ = ̂ · k̂ = k̂ · ı̂ = 0
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A scalar product is an “inner product”
We have been writing vectors as row vectors a = [a1, a2, a3]

It’s convenient: it takes less space than writing column vectors

In matrix algebra, vectors are column vectors. So, Ma = v means M11 M12 M13
M21 M22 M23
M31 M32 M33

 a1
a2
a3

 =

 v1
v2
v3


and row vectors are written as a> (a transpose).

Usually we can be relaxed — but care needed sometimes. Eg, the scalar
product is also the inner product used in linear algebra.

The inner product is defined as a>b

a>b = [a1, a2, a3]

 b1
b2
b3

 = a1b1 + a2b2 + a3b3 = a · b
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♣ Scalar Product Example 1

Q: Force F is applied to an object as it moves by small amount δr.
What work is done on the object by the force?

A: The work done is equal to the component of force in the direction of
the displacement multiplied by the displacement itself.
This is just a scalar product:

δW = F · δr .

Of course you know that, but later we will see how to integrate such
elements over particular paths as line integrals.
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♣ Scalar Product Example 2
Q: A cube has four diagonals, connecting opposite vertices. What is the
angle between an adjacent pair?
A:
First think coordinate-free ...

θ = cos−1
(
d1 · d2

d1d2

)
then detail ...
The directions of the diagonals are
[±1,±1,±1]. The ones shown in the
figure are [1, 1, 1] and [−1, 1, 1].

k

i

j

[−1,1,1] [1,1,1]

The angle is thus

θ = cos−1 [1, 1, 1] · [−1, 1, 1]√
12 + 12 + 12

√
−12 + 12 + 12

= cos−1(1/3)
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♣ Scalar Product Example 3

Q: A pinball with velocity s bounces (elastically) from a baffle whose
endpoints are p and q. Find the velocity vector after bounce.
A:

^

p

u

q

s

Refer to coord frame with principal
direction along the baffle

û = (q− p)
/
|q− p|

Physics tells us that velocities before and
after are:

sbefore = s|| + s⊥ safter = s|| − s⊥
But

s|| = (s · û)û ⇒ s⊥ = s− (s · û)û

So
safter = (s · û)û− (s− (s · û)û) = 2(s · û)û− s
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♣ Scalar Product Example 3

Worth reflecting on this example ...

Using vectors as complete entities (ie, not thinking about
components) has made a tricky problem trivial to solve.

Several languages (including Matlab) allow one to declare vector
objects

^

p

u

q

s

p=[3;4]; q=[1;-1]; s=[1;2];
diff = q-p;
uhat = diff/norm(diff);
safter = 2*dot(s,uhat)*uhat - s

You think in vectors, while built in routines handle the detail of
components

... Reflection over.
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Vector or cross product
The vector product of two vectors a and b is

a× b = (a2b3 − a3b2)̂ı+ (a3b1 − a1b3)̂+ (a1b2 − a2b1)k̂.

Awkward to remember the above!
Instead use the pseudo determinant

a× b =

∣∣∣∣∣∣
ı̂ ̂ k̂
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
where the top row consists of vectors not scalars.
A determinant with two equal rows has value zero, so

a× a = 0

It is also easily verified that

(a× b) · a = (a× b) · b = 0

so that a× b is orthogonal to both a and b.
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Vector product

The magnitude of the vector product can be obtained by showing that

|a× b|2 + (a · b)2 = a2b2

from which it follows (independent of the coord system)

|a× b| = ab sin θ ,

Proof? DIY

The vector product does not commute
It anti-commutes: a× b = −b× a.

The vector product does not associate:
a× (b× c) 6= (a× b)× c.
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Vector Products

The vector product is orthogonal to
both the vectors.

Need to specify the sense w.r.t these
vectors.

Sense of the right handed screw

in right−hand screw sense

Plane of vectors a and b

a x b

b

a
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Vector Products

Note that

ı̂× ̂ =

∣∣∣∣∣∣
ı̂ ̂ k̂
1 0 0
0 1 0

∣∣∣∣∣∣ = k̂ .

And in full: ı̂× ̂ = k̂, ̂× k̂ = ı̂, and k̂× ı̂ = ̂.
The cycle ordering is obvious.
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Geometrical interpretation of vector product

The magnitude of the vector product (a× b) is equal to the area of the
parallelogram whose sides are parallel to, and have lengths equal to the
magnitudes of, the vectors a and b.

Its direction is perpendicular to the parallelogram.

θ

xa b b

bsin θ

a
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♣ Random question

Q: g is vector from [1,2,3] to [3,4,5].
and â is the unit vector in dirn O→A.

Find b̂, a UNIT vector along g × â
Verify that b̂ is is perpendicular to â.
Find ĉ, the third member of a r-h coord set
â, b̂, ĉ.

gA B
[1,2,3]

[3,4,5]
a

g = [2, 2, 2].

â = [1, 2, 3]/
√

14

g × a =

∣∣∣∣∣∣
ı̂ ̂ k̂
2 2 2
1 2 3

∣∣∣∣∣∣ = [2,−4, 2]

⇒b̂ = [1,−2, 1]/
√

6

â·̂b = (1×1+2×−2+1×3)/
√

84 = 0

ĉ = â× b̂ = 1√
6
√

14

∣∣∣∣∣∣
ı̂ ̂ k̂
1 2 3
1 −2 1

∣∣∣∣∣∣
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♣ Another random question

Q: If f̂ and ĝ are two unit vectors, what is the magnitude of the vector
product (̂f × ĝ)?
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Components with a non-orthogonal basis set
Earlier we revised the idea of describing a
vector as a linear sum of orthogonal
components: v = v1̂ı+ v2 ̂+ v3k̂.

We also discussed components of a vector
... You’ll recall v1 = v · ı̂, etc.

c

b

a
v

Suppose we replaced (̂ı, ̂, k̂) with a non-orthogonal, non-unit and
non-coplanar set of vectors (a,b, c).

By combining suitable amounts of these we can reach any point in
3-space, so any vector must be expressible as

v = αa+ βb+ γc .

The question now is what are α, β and γ?
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Components with a non-orthogonal basis set

You will be tempted to answer “the
component of v in the direction of a”.
That is, α = (v · â)

THIS IS WRONG

c

b

a
v

The way to find α is to dot the RHS of the equation with a vector that
this perpendicular to both b and c.

The obvious choice is (b×c):

v · (b×c) = αa · (b×c) + βb · (b×c) + γc · (b×c)
= αa · (b×c)

This is a scalar equation, so that

α =
v · (b×c)
a · (b×c)

and β =
v · (c×a)
b · (c×a)

and γ =
v · (a×b)
c · (a×b)
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Components with a non-orthogonal basis set
α =

v · (b×c)
a · (b×c)

and β =
v · (c×a)
b · (c×a)

γ =
v · (a×b)
c · (a×b)

NB 1: that the results are unique. Though
the vectors a,b, c are not orthogonal, one
cannot substitute, say, a bit more b and c
for a loss of a bit of a.

c

b

a
v

NB 2: The result specializes properly when the set is orthonormal. Eg ...

α =
v · (̂×k̂)
ı̂ · (̂×k̂)

=
v · ı̂
ı̂ · ı̂

= v · ı̂ .

NB 3: the expressions for α etc fail when the denominator is zero. This
occurs when the vectors a,b, c are coplanar (later!).
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Summary

We’ve revised and discussed ...

Free, sliding and position vectors

Coord frames and Vector components

Equality, magnitude, Addition, Subtraction

Scalar products, Vector Projection, Inner products

Vector Products

More routine stuff in Lecture 2 ...
Then the calculus starts


