
Lecture 7

Gauss’ and Stokes’ Theorems
This section finally begins to deliver on why we introduced div grad and curl. Two
theorems, both of them over two hundred years old, are explained:

Gauss’ Theorem enables an integral taken over a volume to be replaced by one taken
over the surface bounding that volume, and vice versa. Why would we want to do
that? Computational efficiency and/or numerical accuracy!

Stokes’ Law enables an integral taken around a closed curve to be replaced by one
taken over any surface bounded by that curve.

7.1 Gauss’ Theorem

Suppose that a(r) is a vector field and we want to compute the total flux of the field
across the surface S that bounds a volume V . That is, we are interested in calculating:∫

S

a · dS (7.1)

where recall that dS is normal to the locally planar surface element and must every-
where point out of the volume as shown in Figure 7.1.

dS

dS

dS

dS

dS

Figure 7.1: The surface element dS must stick out of the surface.
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Gauss’ Theorem tells us that we can do this by considering the total flux generated
inside the volume V :

Gauss’ Theorem∫
S

a · dS =
∫
V

div a dV (7.2)

obtained by integrating the divergence over the entire volume.

7.1.1 Informal proof

An non-rigorous proof can be realized by recalling that we defined div by considering
the efflux dE from the surfaces of an infinitesimal volume element

dE = a · dS (7.3)

and defining it as

div a dV = dE = a · dS . (7.4)

If we sum over the volume elements, this results in a sum over the surface elements.
But if two elemental surface touch, their dS vectors are in opposing direction and
cancel as shown in Figure 7.2. Thus the sum over surface elements gives the overall
bounding surface.

Figure 7.2: When two elements touch, the dS vectors at the common surface cancel out. One can
imagine building the entire volume up from the infinitesimal units.
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♣ Example of Gauss’ Theorem

This is a typical example, in which the surface integral is rather tedious, whereas the
volume integral is straightforward.

Q: Derive
∫
S a · dS where a = z3k̂ and S is the surface of a sphere of radius R centred

on the origin:

1. directly;

2. by applying Gauss’ Theorem

R

z
3
k

R
z

dz
dS =

θR sin d
2

θ dφ r

Figure 7.3:

A:

(1) On the surface of the sphere, a = R3 cos3 θk̂ and dS = R2 sin θdθdφr̂. Everywhere
r̂ · k̂ = cos θ.

⇒
∫
S

a · dS =
∫ 2π
φ=0

∫ π

θ=0

R3 cos3 θ . R2 sin θdθdφ r̂ · k̂ (7.5)

=

∫ 2π
φ=0

∫ π

θ=0

R3 cos3 θ . R2 sin θdθdφ . cos θ

= 2πR5
∫ π

0

cos4 θ sin θdθ

=
2πR5

5

[
− cos5 θ

]π
0
=
4πR5

5

(2) To apply Gauss’ Theorem, we need to figure out div a and decide how to compute
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the volume integral. The first is easy:

diva = 3z2 (7.6)

For the second, because diva involves just z , we can divide the sphere into discs of
constant z and thickness dz , as shown in Fig. 7.3. Then

dV = π(R2 − z2)dz (7.7)

and ∫
V

div adV = 3π

∫ R

−R
z2(R2 − z2)dz (7.8)

= 3π

[
R2z3

3
−
z5

5

]R
−R

=
4πR5

5

7.2 Surface versus volume integrals
At first sight, it might seem that with a computer performing surface integrals might be
better than a volume integral, perhaps because there are, somehow, “fewer elements”.
However, this is not the case. Imagine doing a surface integral over a wrinkly surface,
say that of the moon. All the elements involved in the integration are “difficult” and
must be modelled correctly. With a volume integral, most of the elements are not at
the surface, and so the bulk of the integral is done without accurate modelling. The
computation easier, faster, and better conditioned numerically.

7.3 Extension to Gauss’ Theorem
Suppose the vector field a(r) is of the form a = U(r)c, where U(r) as scalar field and
c is a constant vector. Then, as we showed in the previous lecture,

div a = gradU · c+ Udiv c (7.9)
= gradU · c

since divc = 0 because c is constant.

Gauss’ Theorem becomes∫
S

Uc · dS =
∫
V

grad U · cdV (7.10)

or, alternatively, taking the constant c out of the integrals

c ·
(∫

S

UdS

)
= c ·

(∫
V

grad UdV

)
(7.11)
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This is still a scalar equation but we now note that the vector c is arbitrary so that the
result must be true for any vector c. This can be true only if the vector equation∫

S

UdS =

∫
V

grad UdV (7.12)

is satisfied.

If you think this is fishy, just write c = ı̂, then c = ̂, and c = k̂ in turn, and you must
obtain the three components of

∫
S UdS in turn.

Further “extensions” can be obtained of course. For example one might be able to write
the vector field of interest as

a(r) = b(r)× c (7.13)

where c is a constant vector.

♣ Example of extension to Gauss’ Theorem
Q U = x2 + y 2 + z2 is a scalar field, and

volume V is the cylinder x2 + y 2 ≤
a2, 0 ≤ z ≤ h. Compute the surface
integral∫

S

UdS (7.14)

over the surface of the cylinder.

A It is immediately clear from symmetry
that there is no contribution from the
curved surface of the cylinder since for
every vector surface element there ex-
ists an equal and opposite element with
the same value of U. We therefore
need consider only the top and bottom
faces.

d
z=0

z=h

dS

S

z

Top face:

U = x2 + y 2 + z2 = r 2 + h2 and dS = rdrdφk̂ (7.15)

so∫
UdS =

∫ a

r=0

(h2+r 2)2πrdr

∫ 2π
φ=0

dφk̂ = k̂π

[
h2r 2 +

1

2
r 4
]a
0

= π[h2a2+
1

2
a4]k̂ (7.16)
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Bottom face:

U = r 2 and dS = −rdrdφk̂ (7.17)

The contribution from this face is thus −πa4

2 k̂, and the total integral is πh2a2k̂.

On the other hand, using Gauss’ Theorem we have to compute∫
V

grad UdV (7.18)

In this case, grad U = 2r,

2

∫
V

(x ı̂+ y k̂+ z k̂)r dr dz dφ (7.19)

The integrations over x and y are zero by symmetry, so that the only remaining part is

2

∫ h

z=0

zdz

∫ a

r=0

r dr

∫ 2π
φ=0

dφk̂ = πa2h2k̂ (7.20)

7.4 Stokes’ Theorem
Stokes’ Theorem relates a line integral around a closed path to a surface integral over
what is called a capping surface of the path.

Stokes’ Theorem states:∮
C

a · d l =
∫
S

curl a · dS (7.21)

where S is any surface capping the curve C.

Why have we used d l rather than dr, where r is the position vector?

There is no good reason for this, as d l = dr. It just seems to be common usage in line
integrals!
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7.5 Informal proof
You will recall that in Lecture 5 that we defined curl as the circulation per unit area,
and showed that∑

around elemental loop

a · d l = dC = (∇× a) · dS . (7.22)

Now if we add these little loops together, the internal line sections cancel out because
the d l’s are in opposite direction but the field a is not. This gives the larger surface
and the larger bounding contour as shown in Fig. 7.4.

Figure 7.4: An example of an elementary loop, and how they combine together.

For a given contour, the capping surface can be ANY surface bound by the
contour. The only requirement is that the surface element vectors point in the “general
direction” of a right-handed screw with respect to the sense of the contour integral.
See Fig. 7.5.

Front

Back

Back
Front

Figure 7.5: For a given contour, the bounding surface can be any shape. dS’s must have a positive
component in the sense of a r-h screw wrt the contour sense.
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♣ Example of Stokes’ Theorem

In practice, (and especially in exam questions!) the bounding contour is often planar,
and the capping surface flat or hemispherical or cylindrical.

Q Vector field a = x3̂ − y 3ı̂ and C is the circle of radius R centred on the origin.
Derive∮

C

a · d l (7.23)

directly and (ii) using Stokes’ theorem where the surface is the planar surface
bounded by the contour.

A(i) Directly. On the circle of radius R

a = R3(− sin3 θ̂ı+ cos3 θ̂) (7.24)

and

d l = Rdθ(− sin θ̂ı+ cos θ̂) (7.25)

so that:∮
C

a · d l =
∫ 2π
0

R4(sin4 θ + cos4 θ)dθ =
3π

2
R4, (7.26)

since∫ 2π
0

sin4 θdθ =

∫ 2π
0

cos4 θdθ =
3π

4
(7.27)

A(ii) Using Stokes’ theorem ...

curl a =

∣∣∣∣∣∣
ı̂ ̂ k̂
∂
∂x

∂
∂y

∂
∂z

−y 3 x3 0

∣∣∣∣∣∣ = 3(x2 + y 2)k̂ = 3r 2k̂ (7.28)

We choose area elements to be circular strips of radius r thickness dr . Then

dS = 2πrdr k̂ and

∫
S

curl a · dS = 6π
∫ R

0

r 3dr =
3π

2
R4 (7.29)
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7.6 An Extension to Stokes’ Theorem
Just as we considered one extension to Gauss’ theorem (not really an extension, more
of a re-expression), so we will try something similar with Stoke’s Theorem.

Again let a(r) = U(r)c, where c is a constant vector. Then

curl a = Ucurl c+ grad U × c) (7.30)

Again, curl c is zero. Stokes’ Theorem becomes in this case:∮
C

U(c · d l) =
∫
S

(grad U × c · dS =
∫
S

c · (dS× grad U) (7.31)

or, rearranging the triple scalar products and taking the constant c out of the integrals
gives

c ·
∮
C

Ud l = −c ·
∫
S

gradU × dS . (7.32)

But c is arbitrary and so∮
C

Ud l = −
∫
S

grad U × dS (7.33)

7.7 ♣ Example of extension to Stokes’ Theorem

Q Derive
∮
C Udr (i) directly and (ii) using Stokes’, where

U = x2+ y 2+ z2 and the line integral is taken around C
the circle (x − a)2 + y 2 = a2 and z = 0.
Note that, for no special reason, we have used dr here
not d l.

x

y

a

d r

r ρ
α

d= ρ

A(i) First some preamble.

If the circle were centred at the origin, we would write dr = adθθ̂ = adθ(− sin θ̂ı+
cos θ̂). For such a circle the magnitude r = |r| = a, a constant and so dr = 0.

However, in this example dr is not always in the direction of θ̂, and dr 6= 0. Could
you write down dr? If not, revise Lecture 3, where we saw that in plane polars
x = r cos θ, y = r sin θ and the general expression is

dr = dx ı̂+ dy ̂ = (cos θdr − r sin θdθ)̂ı+ (sin θdr + r cos θdθ)̂ (7.34)
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To avoid having to find an expression for r in terms of θ, we will perform a
coordinate transformation by writing r = [a, 0]> + ρ. So, x = (a + ρ cosα) and
y = ρ sinα, and on the circle itself where ρ = a

r = a(1 + cosα)̂ı+ a sin α̂ , (7.35)

dr = adα(− sin α̂ı + cos α̂) , (7.36)

and, as z = 0 on the circle,

U = a2(1 + cosα)2 + a2 sin2α = 2a2(1 + cosα) . (7.37)

The line integral becomes∮
Udr = 2a3

∫ 2π
α=0

(1 + cosα)(− sin α̂ı+ cos α̂)dα = 2πa3̂ (7.38)

A(ii) Now using Stokes’ ...

For a planar surface covering the disc, the surface element can be written using
the new parametrization as

dS = ρ dρ dαk̂ (7.39)

Remember that U = x2 + y 2 + z2 = r 2, and as z = 0 in the plane

grad U = 2(x ı̂+ y ̂+ z k̂) = 2(a + ρ cosα)̂ı+ 2ρ sin α̂ . (7.40)

Be careful to note that x, y are specified for any point on the disc, not on its
circular boundary!

So

dS× gradU = 2ρ dρ dα

∣∣∣∣∣∣
ı̂ ̂ k̂

0 0 1

(a + ρ cosα) ρ sinα 0

∣∣∣∣∣∣ (7.41)

= 2ρ[−ρ sin α̂ı+ (a + ρ cosα)̂] dρ dα

Both
∫ 2π
0 sinαdα = 0 and

∫ 2π
0 cosαdα = 0, so we are left with∫

S

dS× gradU =
∫ a

ρ=0

∫ 2π
α=0

2ρâ dρ dα = 2πa3̂ (7.42)

Hurrah!

Revised January 23, 2018



Lecture 8

Engineering applications

In Lecture 6 we saw one classic example of the application of vector calculus to
Maxwell’s equation.

In this lecture we explore a few more examples from fluid mechanics and heat transfer.
As with Maxwell’s eqations, the examples show how vector calculus provides a powerful
way of representing underlying physics.

The power come from the fact that div, grad and curl have a significance or meaning
which is more immediate than a collection of partial derivatives. Vector calculus will,
with practice, become a convenient shorthand for you.

• Electricity – Ampère’s Law

• Fluid Mechanics - The Continuity Equation

• Thermo: The Heat Conduction Equation

• Mechanics/Electrostatics - Conservative fields

• The Inverse Square Law of force

• Gravitational field due to distributed mass

• Gravitational field inside body

• Pressure forces in non-uniform flows

1
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8.1 Electricity – Ampère’s Law
If the frequency is low, the displacement current in Maxwell’s equation curlH = J +
∂D/∂t is negligible, and we find

curlH = J

Hence∫
S

curlH · dS =
∫
S

J · dS

or ∮
H · d l =

∫
S

J · dS

where
∫
S J · dS is total current through the surface.

Now consider the H around a straight wire carrying current I. Symmetry tells us the
H is in the θ̂ direction, in a rhs screw sense with respect to the current. (You might
check this against Biot-Savart’s law.)

Suppose we asked what is the magnitude of H?

r

H

In wire Outside wire

r

Current

H
C H

I

r

Front

Back

Inside the wire, the bounding contour only encloses a fraction (πr 2)/(πa2) of the
current, and so

H2πr =

∫
J · dS = I(r 2/A2)

⇒ H = Ir/2πA2

whereas outside we enclose all the current, and so

H2πr =

∫
J · dS = I

⇒ H = I/2πr

A plot is shown in the Figure.
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8.2 Fluid Mechanics - The Continuity Equation
The Continuity Equation expresses the condition of conservation of mass in a fluid
flow. The continuity principle applied to any volume (called a control volume) may be
expressed in words as follows:

“The net rate of mass flow of fluid out of the control volume must equal the
rate of decrease of the mass of fluid within the control volume"

qSd

Control Volume V

Figure 8.1:

To express the above as a mathematical equation, we denote the velocity of the fluid
at each point of the flow by q(r) (a vector field) and the density by ρ(r) (a scalar field).
The element of rate-of-volume-loss through surface dS is dV̇ = q · dS, so the rate of
mass loss is

dṀ = ρq · dS,

so that the total rate of mass loss from the volume is

−
∂

∂t

∫
V

ρ(r)dV =

∫
S

ρq · dS.

Assuming that the volume of interest is fixed, this is the same as

−
∫
V

∂ρ

∂t
dV =

∫
S

ρq · dS .

Now we use Gauss’ Theorem to transform the RHS into a volume integral

−
∫
V

∂ρ

∂t
dV =

∫
V

div (ρq)dV .
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The two volume integrals can be equal for any control volume V only if the two inte-
grands are equal at each point of the flow. This leads to the mathematical formulation
of
The Continuity Equation:

div (ρq) = −
∂ρ

∂t

Notice that if the density doesn’t vary with time, div (ρq) = 0, and if the density
doesn’t vary with position then

The Continuity Equation for uniform, time-invariant density:

div (q) = 0 .

In this last case, we can say that the flow q is solenoidal.

8.3 Thermodynamics - The Heat Conduction Equation
Flow of heat is very similar to flow of fluid, and heat flow satisfies a similar continuity
equation. The flow is characterized by the heat current density q(r) (heat flow per unit
area and time), sometimes misleadingly called heat flux.

Assuming that there is no mass flow across the boundary of the control volume and
no source of heat inside it, the rate of flow of heat out of the control volume by
conduction must equal the rate of decrease of internal energy (constant volume) or
enthalpy (constant pressure) within it. This leads to the equation

div q = −ρc
∂T

∂t
,

where ρ is the density of the conducting medium, c its specific heat (both are assumed
constant) and T is the temperature.

In order to solve for the temperature field another equation is required, linking q to the
temperature gradient. This is

q = −κgrad T,

where κ is the thermal conductivity of the medium. Combining the two equations gives
the heat conduction equation:

−div q = κdiv grad T = κ∇2T = ρc
∂T

∂t

where it has been assumed that κ is a constant. In steady flow the temperature field
satisfies Laplace’s Equation ∇2T = 0.
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8.4 Mechanics - Conservative fields of force
A conservative field of force is one for which the work done∫ B

A

F · dr,

moving from A to B is indep. of path taken. As we saw in Lecture 4, conservative
fields must satisfy the condition∮

C

F · dr = 0,

Stokes’ tells us that this is∫
S

curl F · dS = 0,

where S is any surface bounded by C.

But if true for any C containing A and B, it must be that

curl F = 0

Conservative fields are irrotational
All radial fields are irrotational

One way (actually the only way) of satisfying this condition is for

F = ∇ U

The scalar field U(r) is the Potential Function
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8.5 The Inverse Square Law of force
Radial forces are found in electrostatics and gravitation — so they are certainly irrota-
tional and conservative.

But in nature these radial forces are also inverse square laws. One reason why this may
be so is that it turns out to be the only central force field which is solenoidal, i.e. has
zero divergence.

If F = f (r)r,

div F = 3f (r) + r f ′(r).

For div F = 0 we conclude

r
df

dr
+ 3f = 0

or
df

f
+ 3

dr

r
= 0.

Integrating with respect to r gives f r 3 = const = A, so that

F =
Ar

r 3
, |F| =

A

r 2
.

The condition of zero divergence of the inverse square force field applies everywhere
except at r = 0, where the divergence is infinite.

To show this, calculate the outward normal flux out of a sphere of radius R centered
on the origin when F = F r̂. This is∫

S

F · dS = F
∫
Sphere

r̂ · dS = F
∫
Sphere

d = F4πR2 = 4πA = Constant.

Gauss tells us that this flux must be equal to∫
V

div FdV =

∫ R

0

div F4πr 2dr

where we have done the volume integral as a summation over thin shells of surface
area 4πr 2 and thickness dr .

But for all finite r , divF = 0, so divF must be infinite at the origin.

The flux integral is thus

• zero — for any volume which does not contain the origin

• 4πA for any volume which does contain it.
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8.6 Gravitational field due to distributed mass: Poisson’s Equation
If one tried the same approach as §8.4 for the gravitational field, A = Gm, where m is
the mass at the origin and G the universal gravitational constant, one would run into
the problem that there is no such thing as point mass.

We can make progress though by considering distributed mass.

The mass contained in each small volume element dV is ρdV and this will make a
contribution −4πρGdV to the flux integral from the control volume. Mass outside the
control volume makes no contribution, so that we obtain the equation∫

S

F · dS = −4πG
∫
V

ρdV.

Transforming the left hand integral by Gauss’ Theorem gives∫
V

div FdV = −4πG
∫
V

ρdV

which, since it is true for any V , implies that

−div F = 4πρG.

Since the gravitational field is also conservative (i.e. irrotational) it must have an
associated potential function U, so that F = grad U. It follows that the gravitational
potential U satisfies

Poisson’s Equation

∇2U = 4πρG .

Using the integral form of Poisson’s equation, it is possible to calculate the gravitational
field inside a spherical body whose density is a function of radius only. We have

4πR2F = 4πG

∫ R

0

4πr 2ρdr,

where F = |F|, or

|F | =
G

R2

∫ R

0

4πr 2ρdr =
MG

R2
,

where M is the total mass inside radius R. For the case of uniform density, this is equal
to M = 4

3πρR
3 and |F | = 4

3πρGR.
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8.7 Pressure forces in non-uniform flows
When a body is immersed in a flow it experiences a net pressure force

Fp = −
∫
S

pdS,

where S is the surface of the body. If the pressure p is non-uniform, this integral is not
zero. The integral can be transformed using Gauss’ Theorem to give the alternative
expression

Fp = −
∫
V

grad p dV,

where V is the volume of the body. In the simple hydrostatic case p+ ρgz = constant,
so that

grad p = −ρgk

and the net pressure force is simply

Fp = gk̂

∫
V

ρdV

which, in agreement with Archimedes’ principle, is equal to the weight of fluid displaced.

V

z
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