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Radiative Corrections
As a rule ☛ size of radiative corrections to a given process is             
determined by discrepancy between various mass & energy scales involved

For a wide class of low-energy and    -boson observables           
dominant effects originate entirely in gauge boson propagators                                                                                

Z

∆α,∆ρ,∆r, and ∆κ
●⦁ determines running fine structure constant at    boson scaleZ

α(mZ)/α = (1−∆α)−1

●⦁
∆ρ

➊

➋
●⦁➌
●⦁➍

measures quantum corrections of NC/CC  amplitudes at low energy

∆r embodies non-photonic corrections to muon lifetime

∆κ

∆α

controls effective weak mixing angle
sin2 θ̄w = sin2 θw(1 + ∆κ)

that occurs in ratio of       vector and axial-vector couplingsZff̄

i.e. c
f
V /c

f
A = 1− 4|Qf | sin2 θ̄w

(oblique corrections)  
and can be parametrized in terms of 4 electroweak parameters:
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Today’s class ☛  intro to theory of electroweak radiative corrections        
and its role in testing SM, predicting top mass, constraining Higgs mass,                                                         
and searching for deviations that may signal presence of new physics

Chess Notation

Implementing such a program                                                              
can be first formulated from point of view of experimentalist

Introducing notation ☛ sin2 θw = s2 = 1− c2, m2
W ≡ w, m2

Z ≡ z

Electroweak theory predicts at Born level that:

σ(νµe)

σ(ν̄µe)
=

3− 12s2 + 16s4

1− 4s2 + 16s4
♚w

z
= 1− s2

πα√
2GF

1

w
= s2

Γ(Z → ff̄)

mZ
=

α

3
CF

(
(cfV )

2 + (cfA)
2
)

ALR ! Aτ !
[
4

3
AFB

]1/2
! 2(1− 4s2)

♜

♟

♛

♝
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Chessboard
Chess Eqs. represent incomplete list of experiments 

sin2 θwcapable of measuring 

Validity of SM requires that each measurement yields s2

〡

〢

〣

ⅠⅤ

Ratio of     scattering on left- and right-handed electrons

which is a function of           only ☛

νµ

♚sin2 θw

Ⅴ

Measurement of weak boson masses ☛ ♜

Combination of         , and     as determined by muon lifetime ☛

same value of

mW , α GF ♟

♝

Z
cfV cfA

CF = 3 (1) for quarks (leptons) ☛

Partial widths of     into a fermion pair 
and axial coupling     and     

and color factor

Various asymmetries  measured at   -factories ☛ ♛Z

with vector 
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Corrections to     propagator
After inclusion of        corrections O(α)

from different methods will no longer be same sin2 θw values obtained 

diagram ☛

because radiative corrections modify chess eqs. in different waysexample, the diagram

Z

WW

(5.5.92)

modifies the t-channel Z propagator measured by (5.5.87); see also (5.1.27).
It does not, however, contribute to O(α) shifts in the W, Z masses

Z
+ + + . . .

W

W

f

(5.5.93)

+ + + . . .W

W

f H

(5.5.94)
which yield an improved sin2 θw value via (5.5.88). There is no real mystery
here. After inclusion of O(α) contributions in Eqs. (5.5.87)–(5.5.91), they
represent different definitions of sin2 θw. The experimentalist has to make
a choice and define the Weinberg angle to O(α) by one of the observables
(5.5.87)–(5.5.91). Subsequently, all other experiments should be reformulated
in terms of the preferred “sin2 θ.” What this choice should be is no longer a
matter of debate and we will define sin2 θw in terms of the physical masses
of the weak bosons, i.e.

sin2 θw ≡ 1 −
m2

W

m2
Z

= 0.23122(15) . (5.5.95)

170

modifies  -channel    

Z

t

propagator measured by ♚

E.G. 
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represent different definitions of sin2 θw. The experimentalist has to make
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170

which yield an improved          value via

It does not -- however -- contribute to        shifts in        masses

sin2 θw ♜

O(α) W,Z

Z

☂

☁
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All other experiments should be reformulated in terms of preferred

Weinberg Angle

What this choice should be is no longer a matter of debate 
 we will define          in terms of physical masses of weak bosons 

i.e. sin2 θw ≡ 1− m2
W

m2
Z

= 0.23122(15) ☎

Experimentalist has to make a choice and define Weinberg angle to         
s2

This choice is particularly useful in that one can estimate                      
radiative corrections in terms of renormalization group                       
which has been previously introduced

corrections can be qualitatively understood                        O(α)
in terms of loop corrections to vector-boson propagators      and 

A most straightforward test of theory is now obtained                           
by fixing           in terms of measured weak boson masses                       
and verifying that its value coincides with other measurements of 

☂ ☁

O(α)

sin2 θw

sin2 θw
θw
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Free Parameters
All UV divergences in QED can be absorbed in two parameters:    andα me

List of parameters to be fixed by experiment in electroweak theory includes

α, mW , mZ , mH , mf

weak mixing angle does not appear in list of parameters:
its value is automatically determined by         via ☎

Traditionally ☛ SM Lagrangian is determined in terms of

g, g′, λ, µ, Yf

♨

☕
There is in fact a direct translation between sets ♨ and ☕

g2 = e2
z

z − w
g′2 = e2

z

w

λ = e2
zm2

H

8w(z − w)
Yf = e2

zm2
f

2w(z − w)

mW , mZ
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Electromagnetic Radiative Corrections
Show how relation   is calculated to                                     O(α)

θw
Origin of relation     is    lifetime ☛ to leading order is given by diagram

♟
♜

♟

fermions. There is no mystery here. In principle any choice will do. There
is, in fact, a direct translation between sets (5.5.96) and (5.5.97)

g2 = e2 z

z − w
, (5.5.98)

g′2 = e2 z

w
, (5.5.99)

λ = e2 zm2
H

8w(z − w)
, (5.5.100)

and

Yf = e2
zm2

f

2w(z − w)
. (5.5.101)

As an example we will show how the relation (5.5.89) is calculated to
O(α) in terms of the weak angle θw defined by (5.5.88). The origin of the
relation (5.5.89) is the muon’s lifetime which, to leading order, is given by
the diagram

Γ(0)
µ =

W

(5.5.102)

In Fermi theory, electromagnetic radiative corrections must be included to
obtain the result to O(α). Symbolically,

Γ(1)
µ =

GF√
2

[1 + photonic corrections] , (5.5.103)

where

photonic corrections = + . . . (5.5.104)

172

In Fermi theory  ☛  electromagnetic radiative corrections                                        
must be included to obtain result toO(α)

Symbolically Γ(1)
µ =

GF√
2
[1 + photonic corrections]

where
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g2 = e2 z

z − w
, (5.5.98)

g′2 = e2 z

w
, (5.5.99)

λ = e2 zm2
H

8w(z − w)
, (5.5.100)

and

Yf = e2
zm2

f

2w(z − w)
. (5.5.101)

As an example we will show how the relation (5.5.89) is calculated to
O(α) in terms of the weak angle θw defined by (5.5.88). The origin of the
relation (5.5.89) is the muon’s lifetime which, to leading order, is given by
the diagram

Γ(0)
µ =

W

(5.5.102)

In Fermi theory, electromagnetic radiative corrections must be included to
obtain the result to O(α). Symbolically,

Γ(1)
µ =

GF√
2

[1 + photonic corrections] , (5.5.103)

where

photonic corrections = + . . . (5.5.104)

172

photonic corrections =

♪

example ☛
in terms of weak angle      defined by 

µ
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In electroweak theory
Electroweak Radiative Corrections

Γ(1)
µ =

e2

8s2c2z

[
1 + photonic corrections

+ propagator

+ vertex

+ box
]

where

In electroweak theory, on the other hand,

Γ(1)
µ =

e2

8s2c2z

[
1 + photonic corrections

+ propagator

+ vertex

+ box
]

(5.5.105)

where

propagator = +

f t

+
H

+. . . (5.5.106)

vertex = + . . . (5.5.107)

and

box = + . . .

Z

W

(5.5.108)

Equating (5.5.103) and (5.5.105) we obtain

GF =
πα√

2

1

ws2
(1 + ∆r) , (5.5.109)
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Z

W
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2

1
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f t
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H
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173

and

♬
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Electroweak Model at Born Level@

♪ ♬Equating     and we obtain GF =
πα√
2

1

ws2
(1 + ∆r)

with ∆r = ∆α− c2

s2
∆ρ+∆rem

 Before discussing status of measurements of           note that   

☯

♒

∆r ☛

to leading order ☛          ∆r = 0
 using

α =
e2

4π
mW =

g v

2
=

g

2
√
2λ

mH and mZ =
mW

cos θw

value of R ! 2 is apparent below the threshold for producing charmed par-
ticles at Q = 2(mc + mu) ! 3.7 GeV. Above the threshold for all five quark
flavors (Q > 2mb ! 10 GeV), R = 11

3 as predicted. These measurements con-
firm that there are three colors of quark, because R = 11

3 would be reduced
by a factor of 3 if there was only one color.

These results for R will be modified when interpreted in the context of
QCD. Equation (3.5.83) is based on the (leading order) process e+e− → qq̄.
However, we should also include diagrams where the quark and/or antiquark
radiate gluons. In general

R(α, s) =
σe+e−→qq̄

σe+e−→µ+µ−

(3.5.86)

is a function of the electromagnetic coupling α,

α =
e2

4π
; (3.5.87)

and the annihilation energy s = 4E2
beam:

. (3.5.88)

As always, in (3.5.88) the antiparticles are drawn using only particle (e−, µ−, q)
lines, but note that we omit the arrow lines indicating the time direction of
the antiparticle’s four-momenta. Hereafter we will adopt this simplified no-
tation whenever there is no danger of confusion.

When the annihilation energy far exceeds the light masses m of quarks
and leptons, we must expect that for the dimensionless observable R,

R(α, s) −→
s#m2

constant (3.5.89)

because there is no intrinsic scale in theories with massless exchange bosons.
This prediction disagrees with experiment and is, in fact, not true in renor-
malizable QFT. The exchange of a massless photon is ultraviolet divergent,

98

reduces to Born relation♒ ♟
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Dominant Terms
Electroweak radiative corrections are gathered in ∆r
We specifically isolated fermions which are responsible for running of 

with

∆r = ∆α −
c2

s2
∆ρ + ∆rem . (5.5.110)

We note that the purely photonic corrections drop out. As mentioned above,
the electroweak radiative corrections are gathered in ∆r. Notation (5.5.110)
recognizes the fact that in the OMS scheme, vacuum polarization loops domi-
nate this quantity. We specifically isolated the fermions which are responsible
for the running of α from the muon to the Z mass,

∆α =
∑

f

f

(5.5.111)

as well as the third generation, heavy quark diagram

∆ρ =

t

W
(5.5.112)

Other contributions are small in the OMS scheme and are grouped in the
“remainder” ∆rem.

Before discussing the status of measurements of ∆r, we make several com-
ments. To leading order ∆r = 0 and, using (3.5.87) and (2.4.88), (5.5.109)
reduces to the Born relation (5.5.89). The full order α calculation of ∆r will
not be presented here. We have attempted to describe the full formalism in
a relatively accessible way elsewhere.23 To the extent that ∆rem is small, one

23F. Halzen and D. A. Morris, Phys. Lett. B 237, 107 (1990); Part. World 2, 10 (1991);

F. Halzen and B. A. Kniehl, Nucl. Phys. B 353, 567 (1991); F. Halzen, P. Roy and

M. L. Stong, Phys. Lett. B 277, 503 (1992); F. Halzen, B. A. Kniehl and M. L. Stong,

Z. Phys. C 58, 119 (1993); M. C. Gonzalez-Garcia, F. Halzen and R. A. Vazquez, Phys.

Lett. B 322, 233 (1994).

174
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not be presented here. We have attempted to describe the full formalism in
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23F. Halzen and D. A. Morris, Phys. Lett. B 237, 107 (1990); Part. World 2, 10 (1991);

F. Halzen and B. A. Kniehl, Nucl. Phys. B 353, 567 (1991); F. Halzen, P. Roy and

M. L. Stong, Phys. Lett. B 277, 503 (1992); F. Halzen, B. A. Kniehl and M. L. Stong,

Z. Phys. C 58, 119 (1993); M. C. Gonzalez-Garcia, F. Halzen and R. A. Vazquez, Phys.

Lett. B 322, 233 (1994).

174

as well as third generation heavy quark diagram

Other contributions are small and are grouped in ∆remremainder

To the extent that         is small ☛ one can imagine summing seriescan imagine summing the series

+ + . . .

(5.5.113)
by the replacement (1 + ∆r) → (1 − ∆r)−1 in (5.5.109).

We already discussed the running of α from the small lepton masses to
mZ ; see (3.5.111). The other large contribution ∆ρ, which represents the
loop (5.5.112), is our primary focus here. Its value is given by

∆ρ =
α

4π

z

ω(z − ω)
NC |Utb|2

[
m2

t F (m2
t , m

2
b) + m2

bF (m2
b , m

2
t )

]
, (5.5.114)

with

F (m2
1, m

2
2) =

∫ 1

0

dx x ln
[
m2

1(1 − x) + m2
2x

]
, (5.5.115)

where NC = 3 is the number of colors and Utb is the CKM matrix ele-
ment; |Utb|2 # 1. The diagram has the important property that, defining
mt = mb + ε,

∆ρ #
GF

3π2
ε . (5.5.116)

So in QED, where only equal mass fermions and antifermions appear in
neutral photon loops, ε = 0 and diagrams of this type are not possible. They
are, in fact, prohibited in QED by general arguments. This can be seen by
rewriting (5.5.114) and (5.5.115) in the form

∆ρ =
GF

4π

[
m2

t + m2
b −

2m2
bm

2
t

m2
t − m2

b

ln
m2

t

m2
b

]

#
GF

4π
m2

t #
3α

16π

1

c2s2

m2
t

z
. (5.5.117)

The appearance of a m2
t /z contribution to an observable is far from routine.

It is indeed forbidden in QED and QCD where virtual particle effects are
suppressed by “inverse” powers of their masses; (5.5.116) embodies this re-
quirement because ε = 0 for photon loops. Conversely, the appearance of an
m2

t /z term is a characteristic feature of the electroweak theory. ∆ρ provides
us with a most fundamental probe of electroweak theory short of discovering
the Higgs boson.

175

by replacement (1 + ∆r) → (1−∆r)−1
in ♒

∆rem
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with

We already discussed running of    from small lepton masses to α mZ

Other large contribution      which represents loop ☛ ∆ρ

Its value is given by

NC = 3

∆ρ =
α

4π

z

ω(z − ω)
NC |Utb|2

[
m2

tF (m2
t ,m

2
b) +m2

bF (m2
b ,m

2
t )
]

F (m2
1,m

2
2) =

∫ 1

0
dx x ln

[
m2

1(1− x) +m2
2x

]

where           is number of colors and       is CKM matrix elementUtb

|Utb|2 ! 1

♻

☢

∆ρ

is our primary focus here

with
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s2
∆ρ + ∆rem . (5.5.110)
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23F. Halzen and D. A. Morris, Phys. Lett. B 237, 107 (1990); Part. World 2, 10 (1991);

F. Halzen and B. A. Kniehl, Nucl. Phys. B 353, 567 (1991); F. Halzen, P. Roy and

M. L. Stong, Phys. Lett. B 277, 503 (1992); F. Halzen, B. A. Kniehl and M. L. Stong,

Z. Phys. C 58, 119 (1993); M. C. Gonzalez-Garcia, F. Halzen and R. A. Vazquez, Phys.

Lett. B 322, 233 (1994).
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Fingeprints of Electroweak theory

Rewrite     and    in form♻ ☢

∆ρ =
GF

4π

[
m2

t +m2
b −

2m2
bm

2
t

m2
t −m2

b

ln
m2

t

m2
b

]

" GF

4π
m2

t " 3α

16π

1

c2s2
m2

t

z
           contribution to an observablem2

t/z
where virtual particle effects are suppressed by inverse powers of their masses

 embodies this requirement because         for photon loops⌚ ε = 0
Conversely ☛ appearance of          term                                           m2

t/z

❃

                       has important property that  

with

∆r = ∆α −
c2

s2
∆ρ + ∆rem . (5.5.110)
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(5.5.112)

Other contributions are small in the OMS scheme and are grouped in the
“remainder” ∆rem.
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reduces to the Born relation (5.5.89). The full order α calculation of ∆r will
not be presented here. We have attempted to describe the full formalism in
a relatively accessible way elsewhere.23 To the extent that ∆rem is small, one

23F. Halzen and D. A. Morris, Phys. Lett. B 237, 107 (1990); Part. World 2, 10 (1991);

F. Halzen and B. A. Kniehl, Nucl. Phys. B 353, 567 (1991); F. Halzen, P. Roy and

M. L. Stong, Phys. Lett. B 277, 503 (1992); F. Halzen, B. A. Kniehl and M. L. Stong,

Z. Phys. C 58, 119 (1993); M. C. Gonzalez-Garcia, F. Halzen and R. A. Vazquez, Phys.

Lett. B 322, 233 (1994).
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☛mt = mb + εdefining
∆ρ ! GF

3π2
ε

Diagram

is a characteristic feature of electroweak theory

is forbidden in QED and QCD   

⌚
only equal mass fermions and antifermions appear in neutral photon loops                              
and diagrams of this type are not possible

In QED
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We are now ready to illustrate that         ...
 We first determine experimental value of      from∆r● ♒

GF√
2
=

g2

8m2
W

e = g sin θwUsing and

∆rexp ! 1− (37.281 GeV)2
z

ω(z − ω)
! 0.035

We next recall ●
∆α ! 1− α(0)

α(m2
Z)

! 1− 128

137
! 0.066

Crucial point is that (◬   ⌛) ∆rexp != ∆α

◬

⌛

●

●

●

SM relation ☯ requires a non-vanishing O(α) ∆ρvalue of 

Using ❃ we obtain that                    and ☯ yields∆ρ = 0.0086

(∆r)calculated = ∆α− c2

s2
∆ρ = 0.037

in agreement with experimental value

 We leave it as an exercise to insert errors into calculation               
and show that argument survives a straightforward statistical analysis

!=

∆ρ != 0
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Constrains on Higgs Mass
Higgs particle makes a contribution to 

We are now ready to illustrate that ∆ρ != 0 and is, in fact, consistent with
the standard model value (5.5.117) calculated using the experimental value
of the mass of the top quark. We first determine the experimental value of
∆r from (5.5.109). Using (5.1.24) and (5.4.64):

∆rexp " 1 − (37.281 GeV)2 z

ω(z − ω)
" 0.035 . (5.5.118)

We next recall (3.5.111):

∆α " 1 −
α(0)

α(m2
Z)

" 1 −
128

137
" 0.066 . (5.5.119)

The crucial point is that ∆rexp != ∆α; cf. (5.5.118) and (5.5.119). The O(α)
standard model relation (5.5.110) requires a non-vanishing value of ∆ρ. Using
(5.5.117), we obtain that ∆ρ = 0.0086 and (5.5.110) yields

(∆r)calculated = ∆α −
c2

s2
∆ρ = 0.037 , (5.5.120)

in agreement with the experimental value (5.5.118). We leave it as an exercise
to insert errors into the calculation and show that our argument survives a
straightforward statistical analysis.

The Higgs particle makes a contribution to ∆r:

∆h =

H

W

=
11α

48π

1

c2
ln

m2
H

z
. (5.5.121)

From (5.3.59) we obtain that ∆h < 0.0006, a contribution too small to
be sensed by the simple analysis presented above. The quantity ∆r is in
principle sensitive to the Higgs mass. More sophisticated analyses which
include the dominant O(α2) corrections are now yielding weak, but definite,
constraints on the value of mH .

Other measurements support the electroweak model’s radiative correction
associated with the tb̄ loop ∆ρ. Recall that charged weak currents couple with
strength GF , while neutral currents couple as ρGF ; see (5.1.10) and (5.1.23).

176

=
11α

48π

1

c2
ln

m2
H

z
∆h =

contribution too small to be sensed by simple analysis presented above
Quantity      is in principle sensitive to Higgs mass

From we obtain that 

Radiative corrections predicted by SM have successfully confronted experiment

program is however far from complete
problem can be quantified by rewriting ◬ and ☯ as

∆rexp = F (mW ,mt,mH)

Using   -pole measurements of SLD and LEP1                             
electroweak radiative corrections are evaluated                                  
to predict masses of top quark and    -boson

Z

W

∆r

∆r

∆h < 0.0006114.4 GeV < mH ! 1 TeV
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Figure 5.5: Contour curves of 68% CL in the (mt, mW ) plane for direct mea-

surements and the indirect determinations. The band shows the correlation

between mW and mt expected in the standard model.
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Contour curves of 68% CL in (           ) plane                                   
for direct measurements and indirect determinations

mt,mW

Band shows correlation between        and       expected in SMmW mt

(mW , mt)
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 Neutrino Oscillation
Convincing experimental evidence exists              

Simplest and most direct interpretation of atmospheric data                     
να ! νβ

 Evidence of atmospheric     disappearing is now at          νµ > 15σ
ντmost likely converting to 

Angular distribution of contained events shows that 
Eν ∼ 1 GeV Latm ∼ 102 − 104 kmdeficit comes mainly from

These results have been confirmed by KEK-to-Kamioka (K2K) experiment 
which observes disappearance of accelerator     at a distance of νµ 250 km

Data collected by the Sudbury Neutrino Observatory (SNO)                        
in conjunction with data from Super-Kamiokande (SK)                                   
show that solar      convert to     or     with CL of more thanνe ντνµ 7σ

KamLAND Collaboration has measured flux of     from distant reactors 
and find that      disappear over distances of about 

νe
νe 180 km

All these data suggest that neutrino eigenstates that travel through space                             
are not flavor states that we measured through weak force                     
but rather mass eigenstates

between different neutrino flavorsfor oscillatory transitions

for

is that of muon neutrino oscillations
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Lepton Flavor Mixing

are related by a unitary transformation     (i.e. mixing matrix)
|να〉 |νi〉

U

|να〉 =
∑

i

Uαi|νi〉 ⇔ |νi〉 =
∑

α

(U†)iα|να〉 =
∑

α

U∗
αi|να〉

with U†U = I, i.e.,
∑

i

UαiU
∗
βi = δαβ and

∑

i

UαiU
∗
αj = δij

For antineutrinos one has to replace by Uαi U∗
αi

i.e. |ν̄α〉 =
∑

i

U∗
αi|ν̄i〉

It is easy to see that          relative phases of     neutrino states 
can be redefined such that          independent parameters are left

n× n
n22n− 1

2n

(n− 1)2

1

2
n(n− 1) n

1

2
(n− 1)(n− 2)

For these it is convenient to take:

-violating phasesand

weak mixing angles

Number of parameters of an         unitary matrix is

CP

♁

⨸

Flavor eigenstates        and mass eigenstates      

of an   -dimensional rotation
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Hamiltonian Mechanics
Being eigenstates of mass matrix ☛ states      are stationary states|νi〉⚈

⚈

with

|νi(t)〉 = e−iEit|νi〉

Ei =
√
p2 +m2

i ≈ p+
m2

i

2p
≈ E +

m2
i

2E

where          is total neutrino energyE ≈ p

A pure flavor state                          present at        |να〉 =
∑

i

Uαi|νi〉 t = 0

|ν(t)〉 =
∑

i

Uαie
−iEit|νi〉 =

∑

i,β

UαiU
∗
βie

−iEit|νβ〉

develops with time into state

neutrinos are stable

(i.e. they have the time dependence)

☃

☛  here it is assumed that
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Transition Amplitude
Time dependent transition amplitude                              

isνα νβto flavor 

A(να → νβ) ≡ 〈νβ |ν(t)〉 =
∑

i

UαiU
∗
βie

−iEit

=
∑

i,j

Uαiδije
−iEit(U†)jβ

= (UDU†)αβ

(diagonal matrix)with Dij = δije
−iEit

An equivalent expression for transition amplitude is obtained by 
inserting ☃ into ▩ and extracting an overall phase factor e−iEt

A(να → νβ , t) =
∑

i

UαiU
∗
βi e

− im2
i t

2E

=
∑

i

UαiU
∗
βi e

− im2
i L

2E

where          (recall        ) is distance of detector                             
in which     is observed  from     source

L = ct
νβ να

c = 1

▩

for transition from flavor
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Transition Amplitude
For an arbitrary chosen fixed    transition amplitude becomesj

Ã(να → νβ , t) = eiEjtA(να → νβ , t)

=
∑

i

UαiU
∗
βi e

−i(Ei−Ej)t

= δαβ +
∑

i

UαiU
∗
βi

[
e−i(Ei−Ej)t − 1

]

= δαβ +
∑

i #=j

UαiU
∗
βi

[
e−i∆ij − 1

]

∆ij = (Ei − Ej) = 1.27
δm2

ijL

E
with

   is measured in km        in GeV    and 

(in ☤ unitarity relation ♁ has been used)

EL δm2
ij = m2

i −m2
j in eV2

☤

when

i→ j
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Properties of Transition Amplitude

(n− 1)2

n− 1

n(n− 1)

CP

CP

Uαi

U−1 = UT 1
2n(n− 1)

Number of parameters for transition amplitude is then 

If      is conserved in neutrino oscillations 

with               parameters

Transition amplitudes are thus given by            
parameters of unitary matrix 

and        mass square differences 

oscillations)           

✔

✔

Using ⨸ we obtain amplitudes for transitions between antineutrinos✔

1
2 (n− 1)(n+ 2)

A(ν̄α → ν̄β ; t) =
∑

i

U∗
αiUβie

−iEit ☀

is an orthogonal matrix  U i.e.

all      -violating phases vanish and       are real            

independent 
(which determines sizes of oscillations) 

(which determine frequencies of 

real parameters
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CPT
transformations between neutrinos and antineutrinos 

This follows directly from       theorem:   

provides necessary flip from left-handed neutrino 

and     reverses arrow indicating transition

Comparing ▩ and ☀ following relation holds for

CPT
C

T

P

A(ν̄α → ν̄β) = A(νβ → να) "= A(να → νβ)

That is ☛  if time reversal invariance holds one has

If      is conserved ☛       and      are real in ▩ and ☀

A(ν̄α → ν̄β) = A(να → νβ) = A(ν̄β → ν̄α) = A(νβ → να)

Therefore ☛      violation can be searched for 
oscillations and

CP

Uαi UβiCP

να → νβ νβ → να

to right-handed antineutrino and vice versa

changes particle into antiparticle

e.g. by comparing 
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Transition probabilities are obtained by squaring moduli of amplitudes ▩   

Pνα→νβ =

∣∣∣∣∣
∑

i

UαiU
∗
βie

−iEit

∣∣∣∣∣

2

= δαβ − 4
∑

i>j

"e (U∗
αi Uβi Uαj U

∗
βj) sin

2 ∆ij

+ 2
∑

i>j

#m(U∗
αi Uβi Uαj U

∗
βj) sin 2∆ij

Transition Probability

⌘
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νµall upgoing multi-GeV  

while none of downgoing ones do

observed up-down asymmetry
sin2 2θatm > 0.85

1σ

δm2
atm = 2.2+0.6

−0.4 × 10−3 eV2 tan2 θatm = 1+0.35
−0.26

|Ue3|2 ! 1

to maximal

Combined analysis of atmospheric neutrinos with K2K 
a best fit-point and ranges

and 

On the other hand ☛ reactor data suggest

✻

✻

✻

✻
 flavor eigenstates

✻

|να〉(α = e, µ, τ)

are expanded in terms of 3 mass eigenstates |νi〉(i = 1, 2, 3)
 Atmospheric neutrino data suggest corresponding 

corresponding oscillation phase must be maximal            ∆atm ∼ 1

δm2
atm ∼ 10−4 − 10−2 eV2

In standard treatment of neutrino oscillations

which requires

leads to a mixing angle very close

leads to 

oscillate into different flavorAssuming

Matching Experimental data
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we use fact that         is nearly zero to ignore possible

With this in mind ☛ we can define a mass basis as follows

|Ue3|2 CP
Uand assume that elements of     are real

|ν1〉 = sin θ!|ν!〉+ cos θ!|νe〉

|ν2〉 = cos θ!|ν!〉 − sin θ!|νe〉

|ν3〉 =
1√
2
(|νµ〉+ |ντ 〉)

θ!where     is solar mixing angle 

|ν!〉 = 1√
2
(|νµ〉 − |ντ 〉) is eigenstate orthogonal |ν3〉

𝄡

⏏ to

Mass eigenstates

violation
To simplify...
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 by adding 𝄡 and ⏏ one obtains      flavor eigenstateνµ

|νµ〉 =
1√
2
[|ν3〉+ sin θ!|ν1〉+ cos θ!|ν2〉]

and by substracting these same equations      eigenstateντ

Combined analysis of Solar neutrino data and KamLAND data 

3σ CLare consistent at  with best-fit point and      ranges:1σ

δm2
! = 8.2+0.3

−0.3 × 10−5 eV2 tan2 θ! = 0.39+0.05
−0.04

Flavor Eigenstates
Inversion of neutrino mass-to-flavor mixing matrix leads to

&|νe〉 = cos θ!|ν1〉 − sin θ!|ν2〉 |ν!〉 = sin θ!|ν1〉+ cos θ!|ν2〉
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For                                                                               
(as would be case for neutrinos propagating over cosmic distances), 

∆ij ! 1 L E

averaging over             in ⌘ we obtainsin2 ∆ij

P (να → νβ) = δαβ − 2
∑

i>j

Uαi Uβi Uαj Uβj

 using                       ⌬ can be re-written as2
∑

1>j

=
∑

i,j

−
∑

i=j

,

⌬

P (να → νβ) = δαβ −
∑

i,j

Uαi Uβi Uαj Uβj +
∑

i

Uαi Uβi Uαi Uβi

= δαβ −
(
∑

i

UαiUβi

)2

+
∑

i

U2
αiU

2
βi

Since first and second terms in ⍒ cancel each otherδαβ = δ2αβ

⍒

P (να → νβ) =
∑

i

U2
αi U

2
βi

Far-out neutrinos
phases will be erased by uncertainties in    and
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Average Probability
Probabilities for flavor oscillation are then

P (νµ → νµ) = P (νµ → ντ ) =
1

4
(cos4 θ! + sin4 θ! + 1)

P (νµ → νe) = P (νe → νµ) = P (νe → ντ ) = sin2 θ! cos2 θ!

P (νe → νe) = cos4 θ! + sin4 θ!

Let ratios of neutrino flavors at production in cosmic sources 

we : wµ : wτ

∑

α

wα = 1

of each mass eigenstate are wj =
∑

α

ωα U2
αjso that relative fluxes

be written as                  with

We conclude that probability of measuring on Earth a flavor    is α

Pνα detected =
∑

j

U2
αj

∑

β

wβ U2
βj
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Earhtly Ratios

Any initial flavor ratio that contains⍜ we = 1/3

           will arrive at Earth with equipartition on 3 flavors
⍜ Cosmic neutrinos arise dominantly from decay of charged pions  

their initial flavor ratios of nearly                                              
should arrive at Earth democratically distributed

1 : 2 : 0

⍜ Fairly robust prediction of            cosmic neutrino flavor ratios 1 : 1 : 1

⍜  Prediction for pure    source  originating via neutron     -decay    ν̄e
has different implications for flavor ratios

β

we = 1 ∼ 5 : 2 : 2yields Earthly ratios
⍜ Such a unique ratio would appear above           background                 

in direction of neutron source
1 : 1 : 1

⍜ Flavor identification of neutrinos on a statistical basis                 
becomes possible at IceCube                                                                                  
opening up a window for discoveries in particle physics                  
not otherwise accessible to experiment
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In SM masses arise from  Yukawa interactions                               
which couple right-handed fermion with its left-handed doublet 
after spontaneous symmetry breaking

the Vampire

Because no right-handed neutrinos exist in SM  
Yukawa interactions leave neutrinos massless

❖

❖

❖

❖

One may wonder if neutrino masses could arise from loop corrections
or even by non-perturbative effects
but this cannot happen 
because any neutrino mass term that can be constructed with SM fields  
would violate total lepton symmetry

To introduce a neutrino mass term 
we must either extend  particle content
or else abandon gauge invariance and/or renormalizability
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How to kill a Vampire

♰
m

♰
νRs(1, 1)0

With  particle contents of SM
and addition of an arbitrary     number of right-handed neutrinos 
one can construct two types of mass terms 
that arise from gauge invariant renormalizable operators

(singlets under hypercharge)

We keep  gauge symmetry  
and introduce arbitrary number     of additional 
right-handed neutrino states

−LMν =
∑

α=e,µ,τ

m∑

i=1

MD
iα ν̄Ri νLα +

1

2
MN

ij ν̄Ri ν
c
Rj + h.c.

♰  indicates a charge conjugated fieldνC (νc = Cν̄T )

♰ is a complex matrixMD m× 3
MNand is a symmetric matrix of dimension m×m

m
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Dirac Neutrinos

Forcing            leads to a Dirac mass term 
which is generated from Yukawa interactions                                                           
after spontaneous electroweak symmetry breaking

Yν
iα ν̄Ri φ̄

† LLα ⇒ MD
iα = Yν

iα v√
2

MN = 0

similarly to charged fermion masses

Such a mass term conserves total lepton number                            
but it breaks the lepton flavor number symmetries
For          we can identify the hypercharge singlets 
with right-handed component of  4-spinor neutrino field

m = 3

Since matrix     is (in general) a complex        matrix 
flavor neutrino fields          and     do not have a definite mass

Y 3× 3
νe, νµ ντ

Massive neutrino fields are obtained via diagonalization of LMν

⎊

⎊

⎊

⎊

⎊
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Majorana neutrinos

Such a term is singlet of  SM gauge group

MN != 0If            ☛ neutrino masses                                     
receive important contribution from Majorana mass term

Therefore ☛ it can appear as  bare mass term

Furthermore  ☛ since it involves two neutrino fields 
it breaks lepton number by two units

More generally ☛ such a term is allowed                                         
only if neutrinos carry no additive conserved charge 

This is reason that such terms are not allowed                               
for any charged fermions which (by definition) carry          U(1)EM
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Majorana neutrinos (cont’d)

Dirac mass terms are protected by symmetries of SM 
(neutrino masses     EW symmetry-breaking scale)∝

Majorana mass term is SM singlet 
 elements of         are not protected by SM symmetriesMN

  is generated by new physics beyond SM 
 and right-handed chiral neutrino fields 

 belong to nontrivial multiplets of  symmetries of high energy theory
νR

It is plausible that Majorana mass term
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Saga of SM is still exhilarating 
because it leaves all questions 
of consequence unanswered

SM accuracy has been shown  
in a variety of experiments 

 to an amazing level 
☛ some observables  
beyond even one part in a million

Most evident of unanswered questions is why weak interactions are weak
 In gauge theory 
natural values for mW
are zero or Planck mass

SM does not contain physics that dictates
why its actual value is of order 100 GeV
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Figure 5.6: Order of magnitude of the masses of quarks and leptons.

with real positive masses mk. The resulting diagonal mass term can be
written as

−LMν =
3∑

k=1

mkν̄RkνLk + h.c. =
3∑

k=1

mkνkνk (5.6.156)

where νk = νLk + νRk are the Dirac fields of massive neutrinos.
As shown in Fig. 5.6, neutrino masses are much lighter than the cor-

responding charged fermion masses. Therefore, to get reasonable neutrino
masses (below the eV range) the Yukawa couplings would have to be ex-
ceedingly small: Yν

iα < 10−11. (For charged fermions, the Yukawa couplings
range from Yt " 1 for the top quark down to Ye " 10−5 for the electron).
Dirac neutrino masses in the experimentally preferred range can be gener-
ated if right-handed neutrinos are not complete singlets of the low energy
gauge group, but they are charged under additional U(1) gauge symmetries
broken at the TeV-scale.34 Such additional U(1) symmetries are theoretically
well motivated, as they represent the simplest augmentation of the standard
model, and carry a large amount of interesting phenomenology. For example,
the gauge-extended U(1)C × SU(2)L ×U(1)R ×U(1)L model has the attrac-
tive property of elevating the two major global symmetries of the standard
model, B and L, to local gauge symmetries; but of course neutrinos are able
to oscillate in the standard way since it is only the diagonal lepton number,
L = Le + Lµ + Lτ , which is an exact symmetry.35

If MN $= 0, neutrino masses receive an important contribution from the
Majorana mass term. Such a term is different from the Dirac mass term in
many important aspects. It is a singlet of the standard model gauge group.

34D. A. Demir, L. L. Everett and P. Langacker, Phys. Rev. Lett. 100, 091804 (2008).
35L. A. Anchordoqui, I. Antoniadis, H. Goldberg, X. Huang, D. Lust and T. R. Taylor,

arXiv:1107.4309.
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The Ugly...

Thursday, November 17, 2011



The Good...
Already in 1934 Fermi provided an answer                                       
with a theory that prescribed a quantitative relation                                    
between fine structure constant and weak coupling GF ∼ α/m2

W

Although Fermi adjusted                                                     
to accommodate strength and range of nuclear radioactive decays 
one can readily obtain a value of       of       

π/
√
2

mW

mW

40 GeV
from observed    decay rate for which proportionality factor is 
Answer is off by a factor of 2                                                      
because discovery of parity violation and neutral currents                  
was in future and introduces an additional factor 1−m2

W /m2
Z

GF =

[
πα√
2m2

W

] [
1

1−m2
W /m2

Z

]
(1 + ∆r)

Fermi could certainly not have anticipated                                        
that we now have a renormalizable gauge theory                           
that allows us to calculate radiative correction      to his formula∆r

µ
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Higgs mass Radiative Corrections 
One of most acute problems connected with ultraviolet divergences 
concerns radiative corrections to mass appearing in Higgs potential

V = µ2ΦΦ† + λ(Φ†Φ)2

 self-coupling radiative corrections to Higgs mass are

i
Y 2
f

2

∫ Λ d4k

(2π)4
tr(

i

! k −mf

i

! k+ ! p−mf
) ∼ −Λ2 tr(I)

Y 2
f

32π2

i
g2

4

∫ Λ d4k

(2π)4
1

k2 −m2
W

∼ Λ2 g2

64π2

i6λ

∫ Λ d4k

(2π)4
1

k2 −m2
H

∼ Λ2 3λ

8π2

Difference between bare and renormalized masses is

∆µ2 =
1

64π2



9g2 + 3g′2 + 24λ − 8
∑

f

Nf Y 2
f



 Λ2

"
3

16π2v2
(2m2

W + m2
Z + m2

H − 4m2
t )Λ2 , (2)

Upon minimization of the potential dedo this translates into a dangerous contribution to the

Higgs vacuum expectation value which destabilizes the electroweak scale. The standard model works

amazingly well by fixing Λ at the electroweak scale. It is generally assumed that this indicates the

existence of new physics beyond the standard model. Following Weinberg,

L (mW) = |µ2|H†H +
1

4
λ(H†H)2 + L

gauge
SM + L

Yukawa
SM +

1

Λ
L

5 +
1

Λ2
L

6 + . . . , (3)

where the operators of higher dimension parametrize physics beyond the standard model. The

optimistic interpretation of all this is that, just like Fermi anticipated particle physics at 100 GeV

in 1934, the electroweak gauge theory requires new physics to tame the divergences associated

with the Higgs potential. By the most conservative estimates this new physics is within our reach.

Avoiding fine tuning requires Λ ! 2 − 3 TeV to be revealed by the CERN LHC. For example, for

mH = 115 − 200 GeV,
∣

∣

∣

∣

∆µ2

µ2

∣

∣

∣

∣

=
δv2

v2
≤ 10 ⇒ Λ = 2 − 3 TeV , (4)

where we have implicity used v2 = −µ2/λ [valid in the approximation of disregarding terms beyond

O(H4) in the Higgs potential].

Dark clouds have built up around this sunny horizon because some electroweak precision mea-

surements match the standard model predictions with too high precision, pushing Λ to 10 TeV.

The data push some of the higher order dimensional operators in Weinberg’s effective Lagrangian
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Avoiding fine tuning requires Λ ! 2 − 3 TeV to be revealed by the CERN LHC. For example, for
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Difference between bare and renormalized masses is
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SM works amazingly well by fixing    at electroweak scale
generally assumed ☛ this indicates existence of new physics beyond SM

Λ

Following Weinberg
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1

4
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1

Λ
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where operators of higher dimension parametrize physics beyond SM

Veltman Condition

By most conservative estimates this new physics is within our reach

Some have resorted to rather extreme lengths by proposing that 
factor multiplying unruly quadratic correction            

must vanish exactly!

(2m2
W +m2

Z +m2
H − 4m2

t )
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Avoiding fine tuning requires              to be revealed by CERN LHCΛ ! 2− 3
E.G. for mH = 115− 200 GeV,

∣∣∣∣
∆µ2

µ2

∣∣∣∣ =
δv2

v2
≤ 10 ⇒ Λ = 2− 3 TeV

v2 = −µ2/λ

O(H4)

we have implicity used                    

disregarding terms beyond            in Higgs potential]

New Physics at the TeV Scale?

 [valid in approximation 

Let's contemplate possibilities

Veltman condition happens to be satisfied                                     
and this would leave particle physics with an ugly fine tuning problem

⌾

⌾

This is very unlikely ☛ LHC must reveal Higgs physics                    
already observed via radiative correction                                      
or at least discover physics that implements Veltman condition
It must appear at                                                              
even though higher scales can be rationalized                                  
when accommodating selected experiments

⌾

2− 3TeV
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 SUSY

SUSY offers  solution of bad behavior of radiative corrections in SM

As for every boson there is a companion fermion                                  
bad divergence associated with Higgs loop                                  is 
cancelled by a fermion loop with opposite sign

H

Figure 1: Supersymmetry offers a neat solution of the bad behavior of radiative corrections in the

standard model. As for every boson there is a companion fermion, the bad divergence associated

with the Higgs loop is cancelled by a fermion loop with opposite sign.

Let’s contemplate the possibilities. The Veltman condition happens to be satisfied and this

would leave particle physics with an ugly fine tuning problem. This is very unlikely; LHC must

reveal the Higgs physics already observed via radiative correction, or at least discover the physics

that implements the Veltman condition. It must appear at 2−3 TeV, even though higher scales can

be rationalized when accommodating selected experiments. Minimal supersymmetry is a textbook

example.1 Even though it elegantly controls the quadratic divergence by the cancellation of boson

and fermion contributions (see Fig. 1), it is already fine-tuned at a scale of ∼ 2 − 3 TeV. There

has been an explosion of creativity to resolve the challange in other ways; the good news is that

all involve new physics in the form of scalars, new gauge bosons, non-standard interactions. . .

Alternatively, it is possible that we may be guessing the future while holding too small a deck of

cards and LHC will open a new world that we did not anticipate. Particle physics would return to

its early traditions where experiment leads theory, as it should be, and where innovative techniques

introduce new accelerators and detection methods that allow us to observe with an open mind and

without a plan, leading us to unexpected discoveries.

1Supersymmetry predicts that interactions exist that would change fermions into bosons and vice versa, and that

all known fermions (bosons) have a supersymmetric boson (fermion) partner. J. Wess and B. Zumino, Nucl. Phys. B

70, 39 (1974); Phys. Lett. B 49, 52 (1974).

even though it elegantly controls quadratic divergence                        
by cancellation of boson and fermion contributions                                
it is already fine-tuned at  a scale of

Supersymmetry predicts that interactions exist                                                 
that would change fermions into bosons and vice versa                            
and that all known fermions (bosons) have SUSY boson (fermion) partner

2− 3TeV
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Next class       
U have a test!

The Bad...
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Happy thanksgiving
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