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Particle in a central potential Generalities of angular momentum operator

@ Operators can be often constructed
taking corresponding dynamical variable of classical mechanics
expressed in terms of coordinates and momenta

replacing { N
p

A

— X

— P

@ Apply this prescription to angular momentum

@ In classical mechanics one defines angular momentum by

L=7xp

@ We get angular momentum operator by replacing:
e vector 7 &= vector operator 7 = (%,7,2)
e momentum vector ¢ == momentum vector operator p = —ihV
0 V = (3y,0y,d:) = 9; = /9
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Particle in a central potential Generalities of angular momentum operator

@ Complete fundamental commutation relations

of coordinate and momentum operators are:

(£, 0x] = [0, py] = [2,P2] = iR
and
[ffﬁy] = [frﬁZ] == [2/791/] =0

@ It will be convenient to use following notation

f1=% %=9 2=2 and p1=px, P2 =Py, P3 = Pz
@ Summary of fundamental commutation relations

(%i, pj] = ihdy;

@ Kronecker symbol:

s 1 i=]
P70 if i
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Particle in a central potential Generalities of angular momentum operator

Commutation relations for components of angular momentum operator'

@ Convenient to get at first commutation relations with £; and p;
@ Using fundamental commutation relations

o Ly=7p.—2py e [2,Ls] =0

o L,=2py—%p.w [£,L,)] =% 2px] — [£ £p:] = ih2

o similarly & [%,1,] = —ihy
@ We can ummarize the nine commutation relations

%, Lj] = iheji

and summation over the repeated index k is implied
@ Levi-Civita tensor

£ (ijk) = (1,2,3) or (2,3,1) or(3,1,2)
€ijk = —1 i (ijk) = (1,3,2) or (3,2,1) or (2,1,3)
0 if i=jori=korj=
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Particle in a central potential Generalities of angular momentum operator

@ Similarly we can show
[pi, Lj] = ifiejpr
@ Now == it is straightforward to deduce:
[Li, L] = ifep Ly

@ Important conclusion from this result:
components of L have no common eigenfunctions
@ Must show that angular momentum operators are hermitian

@ This is of course plausible (reasonable) since we know that
angular momentum is dynamical variable in classical mechanics

@ Proof is left as exercise
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Particle in a central potential Generalities of angular momentum operator

@ Construct operator that commutes with all components of L
=13 +L05+ 12
o It follows that s [L, 2] = [L, L3 + L3 + L2] = [L,, [3] + [tx, L2]
@ There is simple technique to evaluate commutator like [L
e write down explicitly known commutator

(L Ly = Lol — LyLy = ifil,

Xrs y]

e multiply on left by L,

A A

LyLiLy — LjLe = inLyL,
e multiply on right by L,
ixiﬁ —L,LL, =inl.L,
e Add these commutation relations to get
e Similarly = [,[2 — [2[, = —ih(L,L. + L.L,)
e Allinall e [L,, Lz] = 0 and likewise [L,, [?] = [L,,[*] =0
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Generalities of angular momentum operator
Summary of angular momentum operator

L=Fxp=—ih?xV (1)

in cartesian coordinates

PR . o 0
Ly = sz—PyZZ—lﬁ<]/aZ—ayZ)
d

commutation relations

N S N

[Li, L] =ifiej Ly and [L2, L] =[L% L) =[I%L.]=0 (3)

IS

P2 12412412

L. A. Anchordoqui (CUNY) Modern Physics 4-9-2019 8/54



Particle in a central potential Schrédinger in 3D

@ Prescription to obtain 3D Schrddinger equation for free particle:
e substitute into classical energy momentum relation

_ PP
E="m )
o differential operators
., 0 - g
E— zha and p— —ihV (5)
e resulting operator equation
n?_, ., 0

acts on complex wave function ¢ (¥, t)

@ Interpret p = |y|? as = probability density
|l|2d3x gives probability of finding particle in volume element d3x
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Particle in a central potential Schrédinger in 3D

Continuity equation

@ We are often concerned with moving particles
e.g. collision of particles

@ Must calculate density flux of particle beam 7

@ From conservation of probability
rate of decrease of number of particles in a given volume
is equal to total flux of particles out of that volume

d

—3; pdV /] ndS—/V]dV (7)

(last equality is Gauss’ theorem)
@ Probability and flux densities are related by continuity equation

+V.7=0 (8)

g
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Particle in a central potential Schrédinger in 3D
Flux

To determine flux. ..

@ First form dp/dt by substracting wave equation multiplied by —iyp*
from the complex conjugate equation multiplied by —iyp

%) h
= - VR — V) = 0 ©)

2m

@ Comparing this with continuity equation = probability flux density

- _ ih * . *
J= =5 WV —pVy") (10)
@ Example = free particle of energy E and momentum p

lp _ Neiﬁf—iEt (1 1)

has = p = |[N|> and 7= |N?| 5/m
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Particle in a central potential Schrédinger in 3D

Time-independent Schrédinger equation for central potential
@ Potential depends only on distance from origin

v(E) =v(7F) = V() (12)

hamiltonian is spherically symmetric

@ Instead of using cartesian coordinates ¥ = {x,y,z}
use spherical coordinates X = {r, 9, ¢} defined by

x = rsin®cos ¢ r= 22+ +22
y =rsindsing & 9 = arctan (Z/\/m> (13)

z =rcost ¢ = arctan(y/x)

@ Express the Laplacian V? in spherical coordinates

10 0 1 0 0 1 02
2_ 29 (20 2 (sinsl 2
V= r2 or <r 81’) T Zsino 90 <51n1989> * 12 sin? § 0¢? (14)
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Particle in a central potential Schrédinger in 3D

To look for solutions... '

@ Use separation of variable methods = (7,9, ¢) = R(r)Y (9, ¢)

B2 [Y d [ ,dR R 9 (. oY R 2%Y
“om {rza (’ E) * Zgind 90 (S““’@) * 4rzsin21937)2} TV(RY = ERY

@ Divide by RY/r? and rearrange terms

B2 [1d (,dR 5 12 1 9 (/. Y 1 %Y
“om {E@ (r E)} V=B =5y Linm (S““’w) * rnz@w}
@ Each side must be independently equal to a constant &= 3 = f%l(l +1)
@ Obtain two equations

1%(Wﬁ)fbmavfm:uu4) (15)

R dr 72

! a( ay> LY iy (16)

- _— [sing— -z =
sindad \° sin? 9 9?2
@ What is the meaning of operator in angular equation?
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Particle in a central potential Schrédinger in 3D

@ Choose polar axis along cartesian z direction
@ After some tedious calculation = angular momentum components

5 (. 0 d
Ly = ih smgo%—i—cotq)cosq)%

. , d . d

L, = —ih <COS P55~ cot ¢ sin (paq)>

R ., 0d

L, = _lﬁ@ (17)

@ Form of 1.2 should be familiar

R 1 9 0 1 0
2_ 32 O [ _+ o
L*=—h Linﬂaﬂ <s1n19819> + sinzﬁafpz] (18)

@ Eigenvalue equations for L2 and [, operators:
L2Y(8,¢) = P11 +1)Y(d,9¢) and L,Y(8,¢) = hmY(d,¢)
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Particle in a central potential Schrédinger in 3D

We can always know:
length of angular momentum plus one of its components

E.g. = choosing the z-component
A

3 |-
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Solution of angular equation

1 9 (. 0Y"(d,¢) 1 °Y/"(8,9)
sin 9 99 <51n19 9v )+sin219 dg?

=—I1(1+1)Y" (3, ¢)
@ Use separation of variables = Y (8¢, ¢) = O(8)P(¢)
@ By multiplying both sides of the equation by sin® 9/Y (4, )

1 [, ,d (. ,d©® 2. 1 &
W |:Slnl9dl9 (Sll’lﬁdl9>:| +l(l+1) s’ 19— _wdiqu (19)

@ 2 equations in different variables = introduce constant m?:

2o
Tz = —m*®(¢) (20)

. d (. dOY 5 . 2
s1n19ﬁ <Slnl9dl9) = [m* —1(l + 1) sin” 8]©(9) (21)
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Particle in a central potential Schrédinger in 3D

Solution of angular equation

@ First equation is easily solved to give = ®(¢) = ™

@ Imposing periodicity ®(¢ +27) = &(¢) = m =0,+1,£2,---
@ Solutions to the second equation = ©(9) = AP/"(cos 9)

@ P/" = associated Legendre polynomials

@ Normalized angular eigenfunctions

Y/ (9, ) = \/<2l4—;1> 8 _T_ Z;: P"(cos @)e™¢ (22)

@ Spherical harmonics are orthogonal:

/ / “(9,¢) Y1 sin 8d9dg = Sy (23)
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rticle in a central potential Schrédinger in 3D

AN 0 1 2 3
0 Py =1
1 Py = cosd P}sind
2 PP = (3cos® ¥ —1)/2 P} = 3cos¥sind P? =3sin®9
3 PY(5c08® ¥ — 3cos ) /2 P =3(5cos®9 — 1)/2 sind P = 15cos¥sin® ¥ P = 15sin®¥
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__________Particleinacentral potential JRCUlllglEl
Solution of radial equation

a (ﬂ‘”zgr)) _ 21;;272(‘/ _E) = I +1)R(r) (24)

@ to simplify solution = u(r) = rR(r)

R d2u BoI(I+1)
‘mw*h

] u(r) = Eu(r) (25)

2m 12
@ define an effective potential

R U(+1)
2m 12

V(r)=V(r)+

(25) is very similar to the one-dimensional Schrédinger equation
@ Wave function = need 3 quantum numbers (1,1, m)

Yuam(r, 8, @) = Ry (r)Y[" (8, @) (27)
Modern Physics 492019  19/54
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Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom
I

We start with the equation for
the relative motion of electron and proton

[_%vf +V(r)}U(l‘) =E,U(r)

We use the spherical symmetry of this
equation
and change to spherical polar coordinates
From now on, we drop the subscript r in the
operator V*
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Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom
I

In spherical polar coordinates, we have

2
% Eizir22+iz[ .1 i(sinei}L%a—z}
r~or Or r°|sinf 00 00 ) sin“ 6 0¢
where the term in square brackets
is the operator V}, =—L*/ * we introduced
in discussing angular momentum
Knowing the solutions to the angular momentum problem
we propose the separation

U(r)=R(r)Y(0.4)
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Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom
|

The mathematics is simpler using the form
1
U(r) =2 2(r)7(6.9)
where, obviously
x(r)=rR(r)

This choice gives a convenient simplification of the
radial derivatives

10 20 2(r)_19%(r)

P or or r r o or’
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Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom
I

Hence the Schrédinger equation becomes

” 10°7(r) 2(r) 1 oy x(r)
L) LA LBy (0.9)+(0.0)1 ()]
~ £, 7(r)Y(6.9)
Dividing by -’y (r)Y(0,¢)/ 2 ur°
and rearranging, we have
roox(r) s2u,. 11 p
Z(”) or? tr e (EH V( ))_ h2 Y(9,¢)LY(9’¢)
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Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom
I

In
72 azz(r) 22_# ~ _i 1 . B
Z(") or? +tr 7> (EH V(r))— H? Y(0,¢)L Y(0’¢) —l(l—i—l)

in the usual manner for a separation argument
the left hand side depends only on r
and the right hand side depends only on #and ¢
so both sides must be equal to a constant
We already know what that constant is explicitly
e, we already know that 'Y, (6,4)=#1(1+1)Y,,(0,4)
so that the constant is /(/+1)
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Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom
I

Hence, in addition to the * eigenequation
which we had already solved
from our separation above, we also have

r o) 222 (B, -1 (r)) = 1+1)

——+
;((r) or’ n’
or, rearranging

nd’y(r) n* 1(1+1)

-—— 4| V(r)+————= r)=E r

2# er () 2# r2 Z() HZ()

which we can write as an ordinary differential equation

All the functions and derivatives are in one variable, »
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Particle in a central potential Internal states of the hydrogen atom

Internal states of the hydrogen atom
N

Hence we have mathematical equation
2 2 2
L v LD ) )
for this radial part of the wavefunction

which looks like a Schrédinger wave equation

with an additional effective potential energy
term of the form
n (1+1)

2

2 r
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Particle in a central potential Internal states of the hydrogen atom

Central potentials
I

Note incidentally that
though here we have a specific form for ¥ (r)
in our assumed Coulomb potential

/s

the above separation works for any potential
that is only a function of r
sometimes known as a central potential

2
e

4re, |re - rp|
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Particle in a central potential Internal states of the hydrogen atom

Central potentials
I

The precise form of the equation
n*d’y(r) n1(1+1)
— =2y (R — )
s )= £ )
will be different for different central potentials
but the separation remains

We can still separate out the I? angular
momentum eigenequation
with the spherical harmonic solutions
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Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions
I

Using a separation of the hydrogen atom wavefunction
solutions into radial and angular parts

U(r)=R(r)Y(6.¢)
and rewriting the radial part using
2(r)=rR(r)
we obtained the radial equation
wdiy(r) (& nI(I+1)
- - - =F
2u dr’ dner 2u 1 ;((r) HZ(F)
where we know [ is 0 or any positive integer
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Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions

—_—
We now choose to write our energies in the form
Ry
E,=——
n

where n for now is just an arbitrary real number
We define a new distance unit
Ss=ar
where the parameter a is
2 2
__'uE

a=—=2 "
na, n
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Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions
N

We therefore obtain an equation
dzl 1(l+1) n 1
A s y=0
ds’ { d

52 s 4
Then we write
x2(s)=s""L(s)exp(-s/2)

so we get
d’L dL
s —[s—2(l+1)]£+[n—(l+l)]L =0
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Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions
I

The technique to solve this equation
2
flsf —[s—2(l+1)](a{—§+[n—(l+l)]L =0
is to propose a power series in s
The power series will go on forever
and hence the function will grow arbitrarily
unless it “terminates” at some finite power
which requires that
nis an integer, and
n>l+1

N
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Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions
I

The normalizable solutions of
d’L dL
- —[s—2(1+1)]d—s+[n—(1+1)]L=o
then become the finite power series
known as the associated Laguerre polynomials
noll +1)!
2 _ 1) (n
i (5) ;0( ) (n—I-q-1)(g+21+1)
or equivalently
P i)!
) Sy

= (P-9)'(j+q)q!

N

q

s
!
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Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions
N

Now we can work back to construct the whole solution
In our definition g(s)=s""L(s)exp(—s/2)
we now insert the associated Laguerre polynomials
x2(s)=s""L" (s)exp(—s/2)
where s =(2/na,)r
Since our radial solution was y(r)=rR(r)
we now have

R(r=na,s/2) oc%s’“Li’f,{ (s)exp(=s/2)

oc s' L8 (s)exp(—s/2)
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Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions - normalization
I

We formally introduce a normalization coefficient 4 so
R(r=na,s/2)= isllf,[:}l,l (s)exp(—s/2)

The full normalization integral of the wavefunction
U(r)=R(r)Y(6.9)
would be o n oan
2 5.
1= [ [ [IR(r)Y(6,9)| r’sin0d0dgdr

=0 0=0 $=0

but we have already normalized the spherical harmonics
so we are left with the radial normalization
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Particle in a central potential Internal states of the hydrogen atom

Radial equation solutions - normalization
N

Radial normalization would be lszz(r)rzdr

0
2n(n+l)!
(n—1-1)!

so the normalized radial wavefunction becomes

172
R(r)—| L2 2V (20 g (20 oo -
| 2n(n+1)!\ na, na, ) """\ na, P na,

We could show .[SZI [Li’f,{l (s)]2 exp(—s)s’ds =
0
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen atom radial wavefunctions
N

We write the wavefunctions
using the Bohr radius a, as the unit of radial distance
so we have a dimensionless radial distance
p=rla,

and we introduce the subscripts
n - the principal quantum number, and
[ - the angular momentum quantum number

to index the various functions R, ;
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Particle in a central potential Internal states of the hydrogen atom

Radial wavefunctions - n =1
I

Principal quantum number 2

n=1 15

R

Angular momentum 1 R (p)

quantum number

/=0 0.5
Ry (p)=2exp(-p)

0 5 10 15

Radius p
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Particle in a central potential Internal states of the hydrogen atom

Radial wavefunctions - n =2
N

=0 0.8
2
Ry (p) =" (2=p)exp(-p/2) 00
0.4
=1 0.2
J6
Ru(p)=— pexp(=p/2) 10 15

-0.2

Radius p
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Particle in a central potential Internal states of the hydrogen atom

Radial wavefunctions - n =3
N

I=0 0.4

Ry, (p)= 203\ R (o)

&(3—2p+gp2jexp(—p/3) 0.2

27 9 otl L Ri(p) R, (p)
1=1

Rs,n(p)=§p(4—§pje>cp(—p/3)o10 N~ T 15
1=2 '

R, p)=%p2exp(—p/3) Radius p
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

[
’ Is I
ZT_, n=1
X [=0
X-z m =0
cross-section
aty=20
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density
—

L,

X

X-Z
cross-section
aty=20
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density
—

ZT_)
X
X-Zz
cross-section
aty=0

logarithmic intensity scale
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density
—

ZL
X
X-Z
cross-section
aty=20
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density

[
’ 3s I
ZL n=3
X [=0
X-z m= 0
cross-section
aty=20
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density
—

L,

X

X-Z
cross-section
aty=0

logarithmic intensity scale
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density
—

ZL
X
X-Z
cross-section
aty=20
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density
—

1,

X

X-Z
cross-section
aty=20

logarithmic intensity scale
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density
—

L,

X

X-Z
cross-section
aty=20
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Particle in a central potential Internal states of the hydrogen atom

Hydrogen orbital probability density
—

4_)
X
X-Z
cross-section
aty=20
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Particle in a central potential Internal states of the hydrogen atom

Behavior of the complete hydrogen solutions
I

(i) The overall “size” of the wavefunctions becomes
larger with larger n
(ii) The number of zeros in the wavefunction is n—1
The radial wavefunctions have n — -1 zeros
and the spherical harmonics have / nodal “circles”
The radial wavefunctions appear to have an additional
zero at » = 0 for all /> 1, but this is already counted
because the spherical harmonics have at least one
nodal “circle” for all > 1
which already gives a zero as » — 0 in these cases
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Particle in a central potential Internal states of the hydrogen atom

Behavior of the complete hydrogen solutions
I

In summary of the quantum numbers
for the so-called principal quantum number
n=1,273,...
and I<n-1
We already deduced that / is a positive or zero integer
We also now know the eigenenergies
Given the possible values for n

Note the energy does not depend on / (or m)
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Particle in a central potential
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Particle in a central potential Internal states of the hydrogen atom

TAKE HOME MESSAGE

@ Angular momentum operators
commute with Hamiltonian of particle in central field

@ E.g. = Coulomb field

@ This implies that L2 and one of L components
can be chosen to have common eigenfunctions with Hamiltonian
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In this appendix, we will show how to derive the expressions of the gradient V, the Laplacian
V2, and the components of the orbital angular momentum in spherical coordinates.

B.1 Derivation of Some General Relations

The Cartesian coordinates (x, y, z) of a vector r are related to its spherical polar coordinates
(r,0,p) by
x =rsinfcosg, y =rsinfsing, z=rcos@ (B.1)

The orthonormal Cartesian basis (£, 7, %) is related to its spherical counterpart (7, 8, ¢) by

% = Fsinfcosg + O coshcosp — @ sing (B.2)
$ = Fsinfsing + 6 cos sing + ¢ cos g, (B.3)
z = Fcosf — 0O sinb. (B.4)

Differentiating (B.1), we obtain

dx = sinfcosgdr +rcosfcospdfd —rsinfsing dg (B.5)
dy = sinfsinpdr +rcosfsinpdf +rcospdp, (B.6)
dz = cos@dr —rsinfdb. (B.7)

Solving these equations for dr, df and dp, we obtain

dr = sinfl cosp dx + sinf sinp dy + cosf dz (B.8)
1 1 1

dé = ;cos@ cos @ dx + ;cos& sinpdy — ;sin@dz, (B.9)

dp = — s dx + = dy. (B.10)

rsinf rsinf



We can verify that (B.5) to (B.10) lead to

or a0 1 oo sin @

— = sinf cos @, — = —cos g cosb, —_—=—, (B.11)
ox éx r éx 7 sind
or . . L) 1. 0 cos
— = sinfsing, (i— = —sing cosé, (i—(o = — L2 : (B.12)
oy oy r 6y  rsinf
or 0 1. 0
— = cosf, i— = ——sinf, 0:_? =0, (B.13)
oz 0z r oz
which, in turn, yield
0 _dor é &0 é 60
éx  oréx 80 éx 6¢ ox
. ¢ 1 e sing &
= sinf cosp— + —cosfcosp— — ———, .14
¢6r 3 r ¢60 rsiné 66 L
6 oor 006 é 6o
dy  oréy o608y 6p oy
; ; % 1 . 0 cosp ¢
= 51n051n¢;+—c0505m¢§—+ : £ -C—, (B.15)
or r 60  rsinf ép
0 o 0 o o6 00 o iné é
= =T P e — - —— (B.16)
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B.2 Gradient and Laplacian in Spherical Coordinates

We can show that a combination of (B.14) to (B.16) allows us to express the operator V in
spherical coordinates:

> o é o é ~1 ¢ 1 ¢
V=Xx—+4+)—+2—=F—+b0-—+o———, 17
ox yay oz or 720 " 7 sing oo G0

.. f.6 68 5 8 6 68 5 @8
V2=V.V=( LiWCR 48 i)~(ri+—%+ 4 ;). (B.18)
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Now, using the relations

n 50 An
= el Y = (B.19)
or or or

oF 4 86 86

_ = 0’ p— =1 —_— 0, 20
¢l a0 5/ (B-20)
57 . 80 0 . &

f—’ = ¢sind, f— = @ cosb, —C;Q = —7sinf — 6 cosb, (B.21)
op 4% oo
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.B.3 Angular Momentum in Spherical Coordinates

The orbital angular momentum operator L can be expressed in spherical coordinates as:

(o))

3 a8 5 Il p 0
L =RxP=(—ih V = (—ih —t - Sl 9
X (=ihr)r x (—i ’)rx|:61+r59+rsin06(p]’ (B.23)

or as

3 b 6 o
L=-it|p— - —— 24
: (‘”ae sm06go) B2

Using (B.24) along with (B.2) to (B.4), we express the components [A.x, L ys L, within the con-
text of the spherical coordinates. For instance, the expression for L, can be written as follows

A

. 3 o A 5 5 8 0 @
Ly = X.L =—ih (rsm()cosgo +0cos()cos<p—(psm(/;)-(go————)

060  sinf ég

jh | sin e + cotd cos ¢ (B.25)

=1 — S@g— |} - .
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Similarly, we can easily obtain

L, =in cos o + cot# sin 2 (B.26)

o= ?%0 ¢ l7) '
L. = sl (B.27)

el

From the expressions (B.25) and (B.26) for Ly and 5 y, we infer, that

" T o o

Li=Ly+il, =he? (@ +i cotG%) : (B.28)

L_=L,-il,=he ;—zcoté?i (B.29)
’ 8 o0 op

The expression for L?is

> > 1 ¢ 0
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e s VY- (Fx V)= — v/ 2 . :
Are(Fx V) -(FxV) har |: e (1 ar):l, (B.30)

it can be easily written in terms of the spherical coordinates as

- 1 0 ) 1 &
L =-1|——(sin0= )+ ——=—|; B.31
[sinH 20 (Sm ae) + e 6¢2] (e
this expression was derived by substituting (B.22) into (B.30).
Note that, using the expression (B.30) for L2, we can rewrite V2 as

18 o L vy il B2 1 -
VZ__ 2 2=__~——L2_ B.32
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