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Particle in a one-dimensional lattice δ-function potential well

A δ-function is infinitely high, infinitesimally narrow spike at x = a
If a = 0 + potential of form

V(x) = −αδ(x)

α + some constant of appropriate dimension
Schrödinger equation for δ-function potentail well reads

− }2

2m
∂2

∂x2 ψ(x)− αδ(x)ψ(x) = Eψ(x)One-Dimensional Potential Wells and Barriers 3

V(x)

x

+ε−ε

Ι ΙΙ ΙΙΙ

Figure 4.1 The delta-function Potential Well

We must now find the solution to Schrödinger's equation in regions I and III.  In each of
these regions we must consider two different cases, one where  and one whereI " !
I $ ! I $ !.  We will first examine the case where .

The Delta-Function Potential Well Solution for I " !
 In region I and III, the Schrödinger equation is

% ÐBÑ œ I ÐBÑ
h `

#7 `B

#

#

2
< < (5.11)

or

` #7I

`B h
ÐBÑ œ % ÐBÑ œ %5 ÐBÑ

2

# #
#< < < (5.12)

which has a solution of the form

<ÐBÑ œ E/-B (5.13)

Plugging this back into the Schrödinger equation reveals that

- œ „ 35 (5.14)

In the case where ,  is imaginary, so we writeI $ ! 5

5 œ œ % œ 3
#7I #7lIl

h h
Ê Ê

# #
, (5.15)

and the solution becomes

<M
5 B % BÐBÑ œ E/ 5 F/ B $ !, , for (5.16)

<MMM
5 B % BÐBÑ œ J/ 5 K/ B " !, , for (5.17)
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Particle in a one-dimensional lattice Bound state wave function for δ-function potential well

In region I and III Schrödinger equation is

− }2

2m
∂2

∂x2 ψ(x) = Eψ(x)

or
∂2

∂x2 ψ(x) = −2mE
}2 ψ(x) = −k2ψ(x)

It has a solution of the form ψ(x) = Aeλx

Plugging this back into Schrödinger equation reveals that λ = ±ik
If E < 0 + k is imaginary so we write

k =

√
2mE
}2 =

√
−2m|E|

}2 = iκ

and the solution becomes

ψI(x) = A e+κx + B e−κx x < 0

ψI I I(x) = Fe+κx + Ge−κx x > 0
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Particle in a one-dimensional lattice Bound state wave function for δ-function potential well

Region I: E < 0 + solution blows up as x → −∞ unless B = 0
Region III: E > 0 + solution blows up as x → +∞ unless F = 0
This means that solutions in regions I and III are:

ψI(x) = Ae+κx x < 0

ψI I I(x) = Ge−κx x > 0

Recall + wave function must be continuous
to have meaning as a probability amplitude

For δ-function potential where region II has no real width
wave function in regions I and III must have same value at x = 0
This requires that A = G so solution to Schrödinger’s equation is

ψI(x) = Aeκx x < 0

ψI I I(x) = Ae−κx x > 0

Equivalently
ψI,I I I(x) = Ae−κ|x|
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Particle in a one-dimensional lattice Bound state wave function for δ-function potential well

Second condition on wave function solution to Schrödinger eq.:
first derivative of wave function

must be continuous for piecewise-continuous potentials
BUT + δ-function potential is not piecewise continuous but infinite
Look carefully at requirement imposed on first derivative

of wave function by Schrödinger equation
Integrate Schrödinger eq. with respect to x over small interval ∆ε

− }
2m

∫ x0+ε

x0−ε

∂2ψ(x)
∂x2 dx +

∫ x0+ε

x0−ε
V(x)ψ(x)dx = E

∫ x0+ε

x0−ε
ψ(x)dx

If ∆ε→ 0 + integral over wave function must go to zero
because ψ(x) is a continuous single-valued function

Integral of ψ′′(x) is just ψ′(x) so that we are left with

lim
∆ε→0

∂ψ(x)
∂x

∣∣∣∣
x0+ε

x0−ε

= lim
∆ε→0

2m
}2

∫ x0+ε

x0−ε
V(x)ψ(x)dx
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Particle in a one-dimensional lattice Bound state wave function for δ-function potential well

Using definition of δ-function we evaluate integral

lim
∆ε→0

∂ψ(x)
∂x

∣∣∣∣
+ε

−ε

= lim
∆ε→0

2m
}2

∫ +ε

−ε
−αδ(x)ψ(x)dx = −2mα

}2 ψ(0)

which we rewrite as

lim
∆ε→0

(
∂ψ(x)

∂x

∣∣∣∣
+ε

− ∂ψ(x)
∂x

∣∣∣∣
−ε

)
= −2mα

}2 ψ(0) = −2mα

}2 A

Now + first partial derivative is evaluated in region x > 0
while second partial is evaluated in region x < 0 giving

lim
∆ε→0

(
−κAe−κx∣∣

+ε
− (+κAe+κx)

∣∣
−ε

)
= −2mα

}2 A

Limit as ε→ 0 fixes value of κ

lim
∆ε→0

(−2κAe−κε) = −2mα}2A

and therefore of energy E according to equation

κ =
mα

}2 =

√
2m|E|
}2
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Particle in a one-dimensional lattice Bound state wave function for δ-function potential well

We see that there is only one allowed energy given by

E = −m2α2

}4
}2

2m
= −mα2

2}2

α + “depth” of δ-function potential

∫ 0

−∞
A2e+2κxdx +

∫ +∞

0
A2e−2κxdx = 1

A2e+2κx

+2κ

∣∣∣∣
0

−∞
+

A2e−2κx

−2κ

∣∣∣∣
+∞

0
= 1

A2

κ
= 1⇒ A =

√
κ

For δ-function potential + we have only one eigenstate
corresponding to energy E < 0 given by

ψE(x) =
√

κ e−κ|x| E = −mα2

2}2

L. A. Anchordoqui (CUNY) Quantum Mechanics 3-26-2019 8 / 26



Particle in a one-dimensional lattice Scattering off the δ-function potential well

In region I and III the Schrödinger equation is again

− }2

2m
∂2

∂x2 ψ(x) = Eψ(x)

or
∂2

∂x2 ψ(x) = −2mE
}2 ψ(x) = −k2ψ(x)

It has a solution of the form ψ(x) = Aeλx

Plugging this back into Schrödinger equation reveals that λ = ±ik
If E > 0 + k is real given by

k =

√
2mE
}2

and the solution becomes

ψI(x) = Ae+ikx + Be−ikx x < 0

ψI I I(x) = Fe+ikx + Ge−ikx x > 0
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Particle in a one-dimensional lattice Scattering off the δ-function potential well

Time-dependent have form of two traveling sinusoidal waves
moving in opposite directions

Assume particles originate in negative half-plane + region x < 0
Particles moving from left encounter δ-function potential at x = 0:
will either continue moving in +x direction
(i.e., they are transmitted through the region of potential change)
or will be reflected and move back in −x direction
If x < 0 we must allow for possibility of 2 opposite going waves
but in region where x > 0 there is only one possibility

+ wave moves only in +x direction
Based upon the initial conditions + G = 0 and so

ψI(x) = A+ikx + B−ikx x < 0

ψI I I(x) = Fe+ikx x > 0

Since wave function must be continuous
these two equations must be equal at x = 0 giving the condition

A + B = F
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Particle in a one-dimensional lattice Scattering off the δ-function potential well

Second condition on wave function solution to Schrödinger eq.:
first derivative of wave function

must be continuous for piecewise-continuous potentials
BUT again + potential is not piecewise continuous but infinite.
As before + we integrate Schrödinger eq. over small interval ∆ε

− }
2m

∫ x0+ε

x0−ε

∂2ψ(x)
∂x2 dx +

∫ x0+ε

x0−ε
V(x)ψ(x)dx = E

∫ x0+ε

x0−ε
ψ(x)dx

If ∆ε→ 0 + integral over wave function must go to zero
because ψ(x) is a continuous single-valued function

Integral of ψ′′(x) is just ψ′(x) so that we are left with

lim
∆ε→0

∂ψ(x)
∂x

∣∣∣∣
x0+ε

x0−ε

= lim
∆ε→0

2m
}2

∫ x0+ε

x0−ε
V(x)ψ(x)dx
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Particle in a one-dimensional lattice Scattering off the δ-function potential well

Using definition of δ-function we evaluate integral

lim
∆ε→0

∂ψ(x)
∂x

∣∣∣∣
+ε

−ε

= lim
∆ε→0

2m
}2

∫ +ε

−ε
−αδ(x)ψ(x)dx = −2mα

}2 ψ(0)

which we rewrite as

lim
∆ε→0

(
∂ψ(x)

∂x

∣∣∣∣
+ε

− ∂ψ(x)
∂x

∣∣∣∣
−ε

)
= −2mα

}2 ψ(0) = −2mα

}2 (A + B)

Now + first partial derivative is evaluated in region x > 0
while second partial is evaluated in region x < 0 giving

lim
∆ε→0

{
ikFe+ikx

∣∣∣
+ε
− [ikAe+ikx + (−ik)Be−ikx]

∣∣∣
−ε

}
= −2mα

}2 (A+ B)

In the limit

lim
∆ε→0

ik
[
(F + B)e+ikε − Ae−ikε

]
= −2mα

}2 (A + B)

this reduces to

F + B− A =
i2mα

}2k
(A + B) = 2iβ(A + B) with β =

mα

}2k
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Particle in a one-dimensional lattice Scattering off the δ-function potential well

Using condition on continuity of wave function F = A + B
this last equation reduces to B = iβ(A + B) or

B =
iβ

1− iβ
A

Since F = A + B solving for F gives

F =
1

1− iβ
A

Probability current density

j = − i}
2m

[
Ψ∗(x, t)

∂

∂x
Ψ(x, t)−Ψ(x, t)

∂

∂x
Ψ∗(x, t)

]

It should be obvious that:
amplitude A related to probability of measuring incoming particle
amplitude B related to probability of measuring reflected particle
and amplitude F to measuring transmitted particle

R ≡
∣∣∣∣

jreflected

jincident

∣∣∣∣ and T ≡
∣∣∣∣

jtransmitted

jincident

∣∣∣∣
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Particle in a one-dimensional lattice Scattering off the δ-function potential well

Solutions for δ-function potential are travelling plane waves

Ψ(x, t) = Aei(kx−ωt)

Probability current density for plane waves is

j = − i}
2m

[
A∗e−i(kx−ωt) ∂

∂x
Aei(kx−ωt) − Aei(kx−ωt ∂

∂x
A∗e−i(kx−ωt)

]

j = − i}
2m

[
A∗e−i(kx−ωt)ikAei(kx−ωt) − Aei(kx−ωt(−ik)A∗e−i(kx−ωt)

]

j = − i}
2m

[
ik|A|2 − (−ik)|A|2

]

j = − i}
2m

2ik|A|2 =
}k
m
|A|2

This has the form
j = p

m |A|2 = u|A|2 where u + velocity
and will be positive or negative depending upon sign of k
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Particle in a one-dimensional lattice Scattering off the δ-function potential well

Incident probability current density

jincident = +
}k
m
|A|2

Reflected probability current density

jreflected = −}k
m
|B|2

Transmitted probability current density

jtransmitted = +
}k
m
|F|2

Recall + β2 = m2α2

}4k2 = m2α2

}4(2mE/}2)
= mα2

2}2E
Reflection coefficient

R =
|B|2
|A|2 =

β2

1 + β2 =
1

1 + 1/β2 =
1

1 + 2}2E/(mα2)

Transmission coeffcient

T =
|F|2
|A|2 =

1
1 + β2 =

1
1 + mα2/(2}2E)
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Particle in a one-dimensional lattice δ-function potential barrier

For δ-function potential barrier + sign of potential is changed

V(x) = +αδ(x)

V(x) acts as infinitely narrow, infinitely tall potential barrier
in otherwise constant potential background

It should be obvious that there is no bound state solution for E < 0
For E > 0 + all we have to do to find solution for infinite barrier

is change sign of α

But reflection and transmission coefficients are function only of α2

so that we obtain the same result as for the potential well
This means that a quantum mechanical particle

can penetrate a potential barrier of infinite height!
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Particle in a one-dimensional lattice Double δ-function potential well

Particularly interesting potentials having lot of practical relevances
are double or multiple (periodic) square well potentials

These potentials are often found in electronic arrangements
in solids or molecules

First + consider attractive double δ-function potential

V(x) = −α[δ(x + a) + δ(x− a)] with α = }2/(ma)

Interest is in E < 0 bound states

�-function potential

A delta-function is an infinitely high, infinitesimally narrow spike at the x = a
say, where a can also be origin. Let the potential of the form,

V (x) = �↵ �(x), (70)

where, ↵ is some constant of appropriate dimension.

The Schrödinger equation for the delta-function well reads

� ~2

2m

d2 

dx2
� ↵ �(x) = E . (71)

This allows solutions for both the bound states E < 0 and scattering states E > 0.

Bound state E < 0: In both the regions x < 0 and x > 0, the potential is V (x) = 0
and, with 2 = �2mE/~2,

d2 

dx2
� 2 = 0

⇢
 (x) = A e�x + B ex x < 0
 (x) = F e�x + G ex x > 0

(72)

However, the term A exp(�x) blows up as x ! �1 and G exp(x) blows up as
x ! 1, therefore dropped A = G = 0. Hence the solution now is

x < 0 :  = B ex x > 0  = F e�x.

To determine the coe�cients and the energy of the bound state (if any), the boundary
conditions are used:  is always continuous and d /dx is discontinuous because of
infinite �-potential (3). The continuity of wavefunction yields,

F = B )  (x) =

⇢
B ex x < 0
B e�x x > 0

(73)

The discontinuity in d /dx implies,

�

✓
d 

dx

◆
=

@ 

@x

����
+✏

� @ 

@x

����
�✏

= � 2m↵

~2
 (0)

x < 0 :
@ 

@x

����
�✏

= B, x > 0 :
@ 

@x

����
+✏

= �B,  (0) = B

) �

✓
d 

dx

◆
= � 2B = � 2m↵

~2
B )  =

m↵

~2
(74)

1

The interest is in E < 0 bound states and the Schrödinger equations are solved for
wave functions in the regions I : x < �a, II : �a  x  a and III : x > a. In all
these regions we have the same Schrödinger equation and the solutions are (discarding
those that blow up at ±1),

d2 

dx2
� 2 = 0, 2 = � 2mE

~2

x < �a :  (x) = A ex (85)

�a  x  a :  (x) = C ex + D e�x (86)

x > a :  (x) = F e�x. (87)

The boundary conditions are applied next to evaluate the unknown constants.

Continuity of  at x = �a :

A e�a = C e�a + D ea (88)

Continuity of  at x = a :

F e�a = C ea + D e�a (89)

Discontinuity of d /dx at x = �a :


�
C e�a � D ea

�
� A e�a = �2m↵

~2
A e�a = �2

a
A e�a (90)

Discontinuity of d /dx at x = a :

�F e�a � 
�
C e�a � D ea

�
= �2m↵

~2
F e�a = �2

a
F e�a. (91)

The discontinuous boundary equations can be simplified as,

For x = �a : A e�a
�
� 2

a

�
= 

�
C e�a � D ea

�
(92)

For x = a : F e�a
�

2
a
� 

�
= 

�
C e�a � D ea

�
. (93)

To determine th allowed energies, we solved the boundary equations (88, 89, 92, 93)
for C and D by eliminating A and F ,

C e�a = D ea(a � 1)
D e�a = C ea(a � 1)

�
C2 = D2 ) C = ±D. (94)

This is nothing surprising, because of the symmetry of the potential, we have both
even and odd parity solutions

Even parity C = D :  = C (ex + e�x) = C 0 cosh(x) (95)

Odd parity C = �D :  = C (ex � e�x) = C 0 sinh(x) (96)

3
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Particle in a one-dimensional lattice Double δ-function potential well

Schrödinger equations are solved for wave functions in regions



I : x < a
I I : a ≤ x ≤ a
I I I : x > a

In all these regions we have same Schrödinger equation

d2ψ

dx2 − κ2ψ = 0 with κ2 = −2mE
}2

Solutions are (discarding those that blow up at ±∞):

x < −a : ψ(x) = Aeκx

−a ≤ x ≤ a : ψ(x) = Ceκx + De−κx

x > a : ψ(x) = Fe−κx
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Particle in a one-dimensional lattice Double δ-function potential well

Apply boundary conditions to evaluate unknown constants
Continuity of ψ(x) at x = −a

Ae−κa = Ce−κa + Deκa

Continuity of ψ(x) at x = a

Fe−κa = Ceκa + De−κa

Discontonuity of dψ/dx at x = −a

κ(Ce−κa − Deκa)− κAe−κa = −2mα

}2 Ae−κa = −2
a

Ae−κa

Discontonuity of dψ/dx at x = a

−κFe−κa − κ(Ce−κa − Deκa) = −2mα

}2 Fe−κa = −2
a

Fe−κa

Discontinuous boundary equations can be simplified as
For x = −a + Ae−κa(κ − 2/a) = κ(Ce−κa − Deκa)
For x = a + Fe−κa(2/a− κ) = κ(Ce−κa − Deκa)

L. A. Anchordoqui (CUNY) Quantum Mechanics 3-26-2019 19 / 26



Particle in a one-dimensional lattice Double δ-function potential well

To determine allowed energies
we solve boundary equations for C and D eliminating A and F

Ce−κa = Deκa(κa− 1)
De−κa = Ceκa(κa− 1)

}
C2 = D2 ⇒ C = ±D

Not surprising + because of symmetry of potential
we have both even and odd parity solutions

Even parity C = D + ψ(x) = C(eκx + e−κx) = C′ cosh(κx)
Odd parity C = −D + ψ(x) = C(eκx − e−κx) = C′ sinh(κx)

Solving for bound state(s) through transcendental equations
Even: C = D + e−2κa = κa− 1⇒ e−2y = y− 1
Odd: C = −D + e−2κa = 1− κa⇒ e−2y = 1− y

Only even bound state solution + y = κa ≈ 1.11
y = κa = 0 leaves bound state wave function non normalizable
For α > }2/ma we can get one odd parity bound state too
For α = }2/(ma) + double δ-function gives lower bound state E

Es = −
mα2

2}2 = − }2

2ma
and Ed = −(1.11)2 }2

2ma2
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Particle in a one-dimensional lattice Kronig-Penney-Dirac model

Kronig-Penney model
describes electron motion in periodic array of rectangular barriers
Kronig-Penney-Dirac model + special case of Kronig-Penney
obtained by taking limit b→ 0 and V0 → ∞ but U0 ≡ V0b finite
In this limit + each rectangular barrier becomes a Dirac δ-function

U(x) = U0

+∞

∑
n=−∞

δ(x− na)

PHYZ6426: Dirac-Kronig-Penney model

D. L. Maslov
(Dated: January 25, 2012)

The Kronig-Penney model describes electron motion in a period array of rectangular barriers (Fig. 1, top).
The Dirac-Kronig Penney model (Fig. 1, bottom) is a special case of the Kronig-Penney model obtained by taking

the limit b → 0, V0 → ∞ but U0 ≡ V0b finite. In this limit, each of the rectangular barriers becomes a Dirac
delta-function:

U (x) = U0

∑

n

δ (x − na) .

The Schroedinger equation reads:

− h̄2

2m
ψ′′ (x) + U (x)ψ = Eψ.

Consider two segments: −a < x < 0 (I) and 0 < x < a (II). Since the potential energy isequal to zero inside each of
the segments, the corresponding wavefunctions are the linear combinations of two plane waves

ψI (x) = Aeiqx + Be−iqx,

ψII (x) = Ceiqx + De−iqx (0.1)

with

q ≡
√

2mE

h̄
.

The wavefunction must satisfy the Bloch theorem

ψ(x) = eikaψ(x − a) (0.2)

If 0 ≤ x ≤ a, this implies that

ψII(x) = eikaψI(x − a)

or

Ceiqx + De−iqx = eika
(
Aeiq(x−a) + Be−iq(x−a)

)
.

V0

b a

a
x=0

I II

FIG. 1: Top: Kronig-Penney model. Bottom: Dirac-Kronig-Penney model.
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Particle in a one-dimensional lattice Kronig-Penney-Dirac model

Schrödinger equation reads

− }2

2m
ψ′′(x) + U(x)ψ(x) = Eψ(x)

Consider two segments:
{

I a < x < 0
I I 0 < x < a

Since potential energy is equal to zero inside each segment
wave functions are linear combinations of two plane waves

ψI(x) = Aeikx + Be−ikx

ψI I(x) = Ceikx + De−ikx

Recall k =
√

2mE/}
Wave function must satisfy Bloch theorem + ψ(x + a) = eiqaψ(x)
Imposing symmetry condition for 0 ≤ x ≤ a we have

ψI I(x) = eiqaψI(x− a)

Ceikx + De−ikx = eiqa
(

Aeik(x−a) + Be−ik(x−a)
)

L. A. Anchordoqui (CUNY) Quantum Mechanics 3-26-2019 22 / 26



Particle in a one-dimensional lattice Kronig-Penney-Dirac model

Since eikx and e−ikx are linearly independent functions, the
coefficients in front of the eikx terms must match

C = Aeiqae−ika and D = eiqaeika

wave function ψI I becomes

ψI I(x) = eiqa
[

Aeik(x−a) + Be−ik(x−a)
]

Boundary conditions
wave function is continuos at x = 0

A + B = eiqa
[

Aeika + Be−ika
]

discontinuity of wave function at x = 0 is obtained by integrating the
Schrödinger equation over narrow interval (−ε, ε) around x = 0

− }2

2m

∫ +ε

−ε
ψ′′(x)dx + U0

∫ +ε

−ε
δ(x)ψ(x)dx = E

∫ +ε

−ε
ψ(x)dx

which gives

− }2

2m
(
ψ′I I(0)− ψ′I(0)

)
+ U0ψI(0) = 0
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Derivatives

ψ′I(0) = ik
[

Aeikx − Be−ikx
]∣∣∣

x=0
= ik(A− B)

ψ′I I(0) = ikeiqa
[

Aeik(x−a) − Be−ik(x−a)
]∣∣∣

x=0
= ikeiqa

[
Ae−ika − Beika

]

Substituting derivatives back + obtain 2× 2 system for A and B

A
(

1− ei(k−q)a
)
+ B

(
1− ei(k+q)a

)
= 0

A
(

ei(q−k)a − 1− 2mU0

i}k

)
+ B

(
−ei(k+qa + 1− 2mU0

i}k

)
= 0

Non-trivial solution + determinant must equal zero
(

1− ei(q−k)a
)(
−ei(q+k)a + 1− 2mU0

i}2k

)
=
(

1− ei(q+k)a
)(

ei(q−k)a − 1− 2mU0
i}2k

)

Opening brackets and simplifying yields

cos(qa) = cos(ka) +
mU0a
}2

sin(ka)
ka

u = mU0a/} + dimensionless parameter of model
“measuring” strength of periodic potential
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Transcendental equation

cos(qa) = cos(ka) + u
sin(ka)

ka

constrains allowed k values (and therefore E)
similar to quantized energies for bound states

If U0 > 0 + maximum value of RHS reached at ka = 0

lim
ka→0

[cos(ka) + u sin(ka)/(ka)] = 1 + u > 0

For larger |ka| + RHS decreases and oscillates
LHS bounded by unity + −1 ≤ cos(qa) ≤ 1
Solution in real numbers for k only possible
within those intervals where magnitude of RHS is less than unity
There are allowed bands of k and gap between those bands
Appearence of energy bands separated by energy gaps

is hallmark of periodic lattice potential system
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Example

cos(ka) + u sin(ka)
ka + u = 10

Horizontal lines + bounds on cos(qa) 3

FIG. 2: Red: the RHS of Eq. (0.3) as a function of qa for u = 10. Horizontal lines: bounds on cos(ka).

II. TIGHT-BINDING LIMIT

When the strength of the potential is large, i.e, u ≡ mU0a
h̄2 ≫ 1, the equation for the eigenergies allows for an

analytic solution. In this case, the right-hand-side can be expanded near zeroes of the sin x/x function. The first zero
of this function is at x = π, so we can choose

qa = π − δ,

where |δ| ≪ 1 and expand in δ. To first order, this yields

cos ka = −1 +
u

π
δ

δ =
π

u
(1 + cos ka)

q =
π

a

(
1 − 1

u
(1 + cos ka)

)

√
2mE

h̄
=

π

a

(
1 − 1

u
(1 + cos ka)

)

E =
π2h̄2

2ma2
− π2h̄4

m2a3U0
(1 + cos ka)

E = E0 − 2J (1 + cos ka)

where

E0 ≡ π2h̄2

2ma2
; J ≡ π2h̄4

2m2a3U0
.

Notice that, by assumption of u ≫ 1, E0 ≫ t. Notice also that E0 is the energy of a free electron with wavenumber
π/a. When opening the square, we neglected the O

(
1/u2

)
term but kept the O (1/u) one. Re-write the dispersion as

E = E0 − 2J (1 + cos ka) = E0 − 2t − 2t cos ka = E0 − 4J + 2J (1 − cos ka)

= E′
0 + 2J (1 − cos ka) .
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