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Particle in a one-dimensional lattice J-function potential well

@ A $-function is infinitely high, infinitesimally narrow spike at x = a
@ If a = 0 = potential of form

V(x) = —ad(x)

« v some constant of appropriate dimension
@ Schrodinger equation for s-function potentail well reads

n? 9?
— () — ad(x)(x) = Ep()
V(x)
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Particle in a one-dimensional lattice Bound state wave function for s-function potential well

@ Inregion | and Ill Schrédinger equation is

h? 02
—%@Wx) = Ey(x)

or
2
79 = -2 = k()
@ It has a solution of the form (x) = Ae
@ Plugging this back into Schrddinger equation reveals that A = +ik
@ If E < 0= kis imaginary so we write

f— 2mE 2m|E| .
— 7712 = — h2 = 1K
and the solution becomes

Pr(x) =Ae™ +Be™ x<0
1./)11[(3() = Fe™™* + Ge ™™ x>0
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Particle in a one-dimensional lattice Bound state wave function for s-function potential well

@ Region I: E < 0 = solution blows up as x — —oco unless B =0
@ Region lll: E > 0 = solution blows up as x — +oco unless F =0
@ This means that solutions in regions | and Ill are:

Pr(x) = Ae™™ x<0
Prr(x) = Ge™™ x>0

@ Recall = wave function must be continuous
to have meaning as a probability amplitude
@ For J-function potential where region Il has no real width
wave function in regions | and Ill must have same value at x =0
@ This requires that A = G so solution to Schrddinger’s equation is

Pr(x) =A™ x<0
Prp(x) = Ae ™™ x>0

@ Equivalently
Y (x) = Ae
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Particle in a one-dimensional lattice Bound state wave function for s-function potential well

@ Second condition on wave function solution to Schrédinger eq.:
first derivative of wave function
must be continuous for piecewise-continuous potentials

BUT = §-function potential is not piecewise continuous but infinite

Look carefully at requirement imposed on first derivative
of wave function by Schrddinger equation

Integrate Schrodinger eq. with respect to x over small interval Ae

A Xo+e€ 82 d xo+e d £ Xo+€
2 Jxye ax2 +/ r= /

If Ae — 0= integral over wave function must go to zero
because ¢ (x) is a continuous single-valued function

@ Integral of ¢’ (x) is just ¢'(x) so that we are left with
op(x) |*ore 2m [Yote
Ae0 90X | . - Aler—l?oﬁ e V()i (x)dx
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Particle in a one-dimensional lattice Bound state wave function for s-function potential well

@ Using definition of J-function we evaluate integral

(x|t 2m e _ 2ma
i, o | = dim e [, iy = Sgyo)

—€
which we rewrite as
. <a¢<x> op(x)
Ae—0 \ 90X |, ox

@ Now == first partial derivative is evaluated in region x > 0
while second partial is evaluated in region x < 0 giving

+xAe™)| _€> = - %A

lim ( —KAe’K"|

Ae—0

@ Limit as € — 0 fixes value of x

lim (—2xAe *¢) = —2mah*A
Ae—0

and therefore of energy E according to equation

+e_(

_ ma 2m|E|

R h?
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Particle in a one-dimensional lattice Bound state wave function for s-function potential well

@ We see that there is only one allowed energy given by

m*a® B* ma?
nt 2m - 2m?
« = “depth” of §-function potential

E=—-

0 +oo

[ A%y [ A% dx =1
—00 0

0 o0

AZ e+2Kx
=1

+2K

AZe—ZKx
—2K

0

2
A?:l:>A:\/E

@ For ¢-function potential == we have only one eigenstate
corresponding to energy E < 0 given by

pe(x) = Vel p— M
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Particle in a one-dimensional lattice Scattering off the J-function potential well

@ In region | and Ill the Schrédinger equation is again

n* o2
—%@4](3‘) = Ey(x)
> 0? 2mE
S¥(x) =~ (x) = k()

@ It has a solution of the form (x) = Ae!*
@ Plugging this back into Schrédinger equation reveals that A = +ik
@ If E > 0w kis real given by

2mE
K=\
and the solution becomes
P1(x) = Ae™™ 4 Be7F  x <0
¢111(X) = F€+ikx + Ge‘ik" x>0
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Particle in a one-dimensional lattice Scattering off the J-function potential well

@ Time-dependent have form of two traveling sinusoidal waves
moving in opposite directions
@ Assume particles originate in negative half-plane == region x < 0
@ Particles moving from left encounter §-function potential at x = 0:
will either continue moving in +x direction
(i.e., they are transmitted through the region of potential change)
or will be reflected and move back in —x direction
@ If x < 0 we must allow for possibility of 2 opposite going waves
but in region where x > 0 there is only one possibility
1= wave moves only in +x direction
@ Based upon the initial conditions = G = 0 and so

lp[( ) +lkx + B*ikx X < 0
¢11](X) = F€+ikx x>0

@ Since wave function must be continuous
these two equations must be equal at x = 0 giving the condition

A+B=F
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Particle in a one-dimensional lattice Scattering off the J-function potential well

@ Second condition on wave function solution to Schrédinger eq.:
first derivative of wave function
must be continuous for piecewise-continuous potentials

@ BUT again = potential is not piecewise continuous but infinite.
@ As before == we integrate Schrodinger eq. over small interval Ae

hopore Py, / O V() p(x)dx = E / T p(x)dx

2m Jyy—e  0x2 1—€

@ If Ae — 0 = integral over wave function must go to zero
because ¢ (x) is a continuous single-valued function

@ Integral of ¢’ (x) is just ¢(x) so that we are left with

lim 9P®)
Ae—0 0X

Xo+€ i m XO+€V ;
= Am oo e (x)9p(x)dx

Xp—€
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Particle in a one-dimensional lattice Scattering off the J-function potential well

@ Using definition of J-function we evaluate integral

(x|t 2m e _ 2ma
i, o | = dim e [, iy = Sgyo)

—€
which we rewrite as

lim

_ 2mu 2mu
Ae—0 e

0 0

@ Now == first partial derivative is evaluated in region x > 0
while second partial is evaluated in region x < 0 giving

} — 2 41

lim {ikpﬁikx — [ikAet™ 4 (—ik)Be %]

Ae—0 +€ ﬁz
@ In the limit
; . 2mu
. ; +ike —ike| _
Alg—I}olk [(F+B)e Ae } 2 (A+B)
this reduces to
2mu ) . mu
F+B— A= 2% (A—I—B)—Zzﬁ(fH—B) with ﬁ_ﬂ
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Particle in a one-dimensional lattice Scattering off the J-function potential well

@ Using condition on continuity of wave function F = A + B
this last equation reduces to B = i(A + B) or

i
B= 7 —ﬁiﬁA
@ Since F = A + B solving for F gives
1
F = 1= iﬁA
@ Probability current density
. ih | . 0 0 i«
j= =5 [‘I’ (x,t)a‘f’(x,t) - ‘I’(x,t)a‘lf (x,t)]

@ It should be obvious that:
amplitude A related to probability of measuring incoming particle
amplitude B related to probability of measuring reflected particle
and amplitude F to measuring transmitted particle

Jreflected Jtransmitted

R = and T =
Jincident Jincident
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Particle in a one-dimensional lattice Scattering off the J-function potential well

@ Solutions for s-function potential are travelling plane waves
Y(x,t) = Agtkx—wt)

@ Probability current density for plane waves is

ih - o , ; 0 ;
P * ,—i(kx—wt) i(kx—wt) i(kx—cwt * ,—i(kx—wt)
Ji o [A e aer Ae —axA e }
]~ — 21:31 |:A>|< —i(kx— wt)lkAe (kx—wt) _ Aei(kxfcut(_ik>A*efi(kxfwt)}

. ho.. .
j= =5 [ikIAP = (=ik)| A
= ot 2ik| AP = K| AP
@ This has the form
j= LA = u|AJ? where u = velocity
and will be positive or negative depending upon sign of k
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Particle in a one-dimensional lattice Scattering off the J-function potential well

@ Incident probability current density
. hk
Jincident = +E|A‘2
@ Reflected probability current density

. hk
Jreflected = _E|B|2

@ Transmitted probability current density

. hk _»
eoq = +—|F
Jtransmitted m’ |
2 _ mPa? __ m2a? _ ma?
® Recall = b° = Tair = ) = 20E
@ Reflection coefficient

B> _ P 1 1

AZ 1+ 1+1/8 1+ 2/2E/(ma?)
@ Transmission coeffcient
|1—"\2 _ 1 1

T — — —
|A’2 1-1-,52 1+moc2/(2h2E)
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Particle in a one-dimensional lattice J-function potential barrier

@ For é-function potential barrier == sign of potential is changed
V(x) = +ad(x)

@ V(x) acts as infinitely narrow, infinitely tall potential barrier
in otherwise constant potential background

@ It should be obvious that there is no bound state solution for E < 0

@ For E > 0 = all we have to do to find solution for infinite barrier
is change sign of «

@ But reflection and transmission coefficients are function only of a2
so that we obtain the same result as for the potential well

@ This means that a quantum mechanical particle
can penetrate a potential barrier of infinite height!
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Particle in a one-dimensional lattice Double é-function potential well

@ Particularly interesting potentials having lot of practical relevances
are double or multiple (periodic) square well potentials

@ These potentials are often found in electronic arrangements

in solids or molecules

@ First = consider attractive double é-function potential

V(x) = —a[d(x+a)+6(x —a)] with « = h?>/(ma)

@ Interestis in E < 0 bound states

S—function potential
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Particle in a one-dimensional lattice Double é-function potential well

@ Schrddinger equations are solved for wave functions in regions

I: x<a
II: a<x<a
IIl: x>a

@ In all these regions we have same Schrédinger equation

2
fo—;@tpzo with x? = - =~

@ Solutions are (discarding those that blow up at +o0):

x < —a : P(x) = Ae*™
—a<x<a : P(x)=Ce™* + De ™
x>a P(x) = Fe ™
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Particle in a one-dimensional lattice Double é-function potential well

@ Apply boundary conditions to evaluate unknown constants
e Continuity of ¢(x) atx = —a

AefKﬂ — Cefm + DeKLl
e Continuity of p(x) atx =a
Fe™™ = Ce"" 4 De™™*

e Discontonuity of dyp/dx at x = —a

2 2
x(Ce ™™ — D) —xAe™™ = —%Ae"‘“ = —EAe_"”
e Discontonuity of dyp/dx atx =a
2 2
—xFe™™ —x(Ce™™ — De**) = —%Fe"‘” = —EFe_"”

@ Discontinuous boundary equations can be simplified as
Forx = —aw Ae ™™ (x —2/a) = k(Ce ™ — De**)
Forx=a w Fe ™ (2/a—x)=x(Ce ™ — De")
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Particle in a one-dimensional lattice Double é-function potential well

@ To determine allowed energies
we solve boundary equations for C and D eliminating A and F

Ce™™ = De" (ka — 1)
De " = Ce"(xa — 1)
@ Not surprising = because of symmetry of potential
we have both even and odd parity solutions
e Even parity C = D = (x) = C(e" + e ) = C’ cosh(xx)
e Odd parity C = —D = ip(x) = C(e"* — ™) = C’ sinh(xx)
@ Solving for bound state(s) through transcendental equations
eEveniC=Dwe M =xg—1=e ¥=y-1
0 0dd:C=-Dwe M =1-rxa=e¥=1-y
@ Only even bound state solution &= y = xa ~ 1.11
@ y = xa = 0 leaves bound state wave function non normalizable
@ For a > h?/ma we can get one odd parity bound state too
@ For a = h?/(ma) v= double é-function gives lower bound state E
ma? h? , h?

ES - _W - —% and Ed - —(1.11)
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Particle in a one-dimensional lattice Kronig-Penney-Dirac model

@ Kronig-Penney model
describes electron motion in periodic array of rectangular barriers

@ Kronig-Penney-Dirac model = special case of Kronig-Penney
obtained by taking limit b — 0 and Vy — oo but Uy = Vb finite

@ In this limit == each rectangular barrier becomes a Dirac é-function

—+o0
U(x)=Uy Y 6(x—na)

n=—oo

L. A. Anchordoqui (CUNY)
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Particle in a one-dimensional lattice Kronig-Penney-Dirac model

@ Schrddinger equation reads
hz " _
—5 ¥ () + U)p(x) = Ep(x)

I a<x<0

I 0<x<a

@ Since potential energy is equal to zero inside each segment
wave functions are linear combinations of two plane waves

¥1(x) = Ae™ 4 Be~ ik
l/)[[(X) — Ceikx + De*ikx
@ Recallk = 2mE/h

@ Wave function must satisfy Bloch theorem = y(x +a) = ey(x)
@ Imposing symmetry condition for 0 < x < a we have

Yrr(x) = €"pr(x —a)
Cel** 1 Deikx — 4ita (Aeik(x—a) n Be—ik(x—a))
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Particle in a one-dimensional lattice Kronig-Penney-Dirac model

@ Since ¢** and e~** are linearly independent functions, the
coefficients in front of the ¢** terms must match

C = Ac1e—ka  and D = ¢l17cika
wave function ¢;; becomes
Y (x) = e [Ae”‘(x—“) + Be—ik(x—a)}

@ Boundary conditions
e wave function is continuos at x =0
A+B= ela {Aeika + Be—iku}
e discontinuity of wave function at x = 0 is obtained by integrating the
Schrédinger equation over narrow interval (—¢, e) around x = 0

n orte +e +e
— 5 " (x)dx + Uo/ O(x)p(x)dx = E P(x)dx
m.J—e —€ —€
which gives

hZ
— 5. (¥11(0) = $1(0)) + Uos(0) = 0
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Particle in a one-dimensional lattice Kronig-Penney-Dirac model

@ Derivatives
¥1(0) = ik [Aeikx — Be_ikx}

0T ik(A— B)

/ — iloiqa ik(x—a) _ p,—ik(x—a) — 15190 —ika __ p,ika
P1;(0) = ike [Ae Be } o ike [Ae Be ]
@ Substituting derivatives back == obtain 2 x 2 system for A and B
A(1-el0m) 4 g (1= elrn) — g

A <el‘<qk>” —1- 2mLI0> +B <—el‘<k+qa +1- 2mLI0> =0

ihk ihk
@ Non-trivial solution == determinant must equal zero

(1 _ Bi(q—k)a) (7L,i(q+k)a 1o ngzbio) _ (1 _ gl(q+k)a> (ei(q—k)a 1 2_';21/;0 )
1 1

@ Opening brackets and simplifying yields
mUpa sin(ka)
h? ka
@ u = mUpa/h = dimensionless parameter of model
“measuring” strength of periodic potential
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Particle in a one-dimensional lattice Kronig-Penney-Dirac model

@ Transcendental equation
sin(ka)
ka

constrains allowed k values (and therefore E)
similar to quantized energies for bound states

@ If Uy > 0 == maximum value of RHS reached at ka = 0

cos(ga) = cos(ka) + u

lim [cos(ka) + usin(ka)/(ka)] =1+u >0

ka—0

@ For larger |ka| = RHS decreases and oscillates
@ LHS bounded by unity = —1 < cos(ga) <1
@ Solution in real numbers for k only possible
within those intervals where magnitude of RHS is less than unity
@ There are allowed bands of k and gap between those bands

@ Appearence of energy bands separated by energy gaps
is hallmark of periodic lattice potential system
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Particle in a one-dimensional lattice Kronig-Penney-Dirac model
Example

ik
@ cos(ka) +u% = 10

® Horizontal lines = bounds on cos(ga)
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