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Bound states in one dimension Particle in a box

0 forx < L/2
Vix)=q VW for —L/2<x<L/2 (1)
0 forx > L/2

~L)2 +L/2
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X
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Bound states in one dimension Particle in a box

@ wave function outside box
P(x) =0 x<—-L/2Ax>L/2

@ wave function inside box

Pp(x) = Ae 4 Bem™  _L/2<x<L/2

@ energy and wave vector

h2k> 2m(E — Vp)

E=—""1V,=kK =
om 0T 12

@ boundary conditions for wave function
IIJ(_L/Z) — Ae*ikL/Z + BeikL/Z -0

IIJ(‘FL/Z) — AeikL/Z + Be*ikL/Z — 0

L. A. Anchordoqui (CUNY) Quantum Mechanics

3-19-2019

(6)

5/22



Bound states in one dimension Particle in a box

@ adding (5) to (6) gives
2(A+B)cos(kL/2) =0
@ while subtracting (5) from (6) gives
2i(A—B)sin(kL/2) =0

@ both conditions in (7) and (8) must be met
e when A = B (8) is met and to satisfy (7)

2ntny T
= +

ka

n=0,1,23,---

e when A = —B in which (7) is met and to satisfy (8)

_ 2mny

=1

ny = 1/2/3/' o
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Bound states in one dimension Particle in a box

e Consolidate quantization conditions rewriting

k:% n=1,2,3- (11)

and solution to time-independent Schrédinger equation

¥ (x) :A{ cos(nmx/L)  fornodd _ Asin [nﬂ <x+L>] (12)

sin(ntx/L)  forneven L

¢ Not only is the wave vector quantized = but also

p=hk=hnn/L (13)
and
n2k? 7% 2n?
E—VO‘Fﬁ—VO‘FW (14)
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Bound states in one dimension Particle in a box

@ Amplitude can be found by considering normalization condition
+oo +L/2 nmT L
2 .
xX)|cdx = / A —(x+ =
/oo 9 ()] ~L/2 Sm[L ( 2)}

sin [nrc <x+L)} i L
~L/2 L 2

dx = = (16)
@ Since we require = |A’L/2 =1

2
A:\E:»zpn(x)z\/%sin {”L” <x+é>] (17)

@ Normalization can be met for a range of complex amplitudes

A= eifp\g (18)

in which phase ¢ is arbitrary
@ This implies outcome of measurement about particle position
(which is proportional to |y (x)|?)
is invariant under global phase factor
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Bound states in one dimension Particle in a box

Hamiltonian operator

@ Each solution i, (x) = satisfies the eigenvalue problem
: ; n 9
Hipu(x) = Enpu(x)  H=|—5_ =75 +V(x) (19)
@ Solutions are orthogonal to one another
+L/2
[ 9 ) dx = 20)
1 m=n
i o man @)
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Bound states in one dimension Particle in a box

Vg v
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Bound states in one dimension Finite square well

' V(X)
E1
-a a X
E)
zhri dzdx = (E—Vo)p(x) inregionI

Ei1>Vy =

—

E, < Vy =
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AR = EY()
— 2TV — (B~ Vo)y(x)

Bk = (% — By
— 3 I = Ey(x)

~om dx = (Vo — E)¢(x)
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Bound states in one dimension Finite square well

@ E; @« Expect to find solution in terms of travelling waves
Not so interesting = describes case of unbound particle
@ E, & Expect waves inside the well and imaginary momentum
(yielding exponentially decaying probability of finding particle)
in outside regions
@ More precisely

e Regionl: K =ix =« = \/ZW(VO Ey) _ \/2m(v0_5)

hZ
e Region Il: k = ,/2’;52 \

e Region lll: K/ = ix = « = \/2m<Vhoz E)) _ \/Zm%g*E)

@ And wave function is
e RegionI: (e *Il
e Region Il: A’eikx 4 Ble—ikx
e Region lll: D'e~**
In first region can write either C’e*1*| or C’e**
First notation makes it clear we have exponential decay
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Bound states in one dimension Finite square well

@ Potential even function of x

@ Differential operator also even function of x

@ Solution has to be odd or even for equation to hold
@ A and B must be chosen such that

1,U(X) — A/eikx + B/e—z‘kx
is either even or odd

@ Even solution @ i(x) = A cos(kx)
@ Odd solution @ (x) = Asin(kx)

Odd solution

@ ¢(—x) = —1p(x) setting C' = —D’ @ rewrite —C' =D’ =C
e Region | y(x) = —Ce*™ and ¢’ (x) = —xCe"™
e Region Il ¢(x) = Asin(kx) and ¢'(x) = kA cos(kx)
e Region lll (x) = Ce ™ and ¢'(x) = —kCe **
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Bound states in one dimension Finite square well

@ Since y(—x) = —y(x) = consider boundary condition @ x = a
@ Two equations are

Asin(ka) = Ce™™
Ak cos(ka) = —xCe "7

@ Substituting first equation into second
Ak cos(ka) = —xAsin(ka)

@ Constraint on eigenvalues k and « = x = —k cot(ka)

@ For the even solution in the well &= ¢(x) = A cos(kx)
e For continuity of ¥(x) = A cos(ka) = Ce™
e For continuity of ¢/(x) = —kAsin(ka) = —Cxe ™

@ Constraint on eigenvalues k and « = x = k tan(ka)
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Bound states in one dimension Finite square well

@ Two different curves of x/k are shown

each corresponding to different V) value

@ V) given by value of ka where «/k = 0= indicated by small arrows

@ Top x/k curve has x/k = 0 for ka = 2.75m or \/2mVya/h = 2.757

@ Allowed values of E are given by values of ka at intersections of:
x/k and tan(ka) as well as «/k and — cot(ka) curves

tan ka
—cot ka
Kk

tan ka
Kk
—cot ka

Graphical Solutions I
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Bound states in one dimension Finite square well

@ Odd solutions

Region| Region Il Region il

@ Even solutions
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Bound states in one dimension Superposition and time dependence

Expansion in orthogonal eigenfunctions

@ Time dependence of quantum states

P (x,t) = tppe Ert/ (22)

@ Solution for “particle in a box”
can be expressed as a sum of different solutions

o0

Y(x,t)= Z CnPn(x, t) (23)
n=1

c, must obey normalization condition &= Y%, [c,|? =1

@ Modulus squared of each coefficient
gives probability to find particle in that state

P, = |Cn|2 (24)
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Bound states in one dimension Superposition and time dependence
Example

@ Particle initially prepared
in symmetric superposition of ground and first excited states

¥t =0) = —= 1) + (o) (25)

@ Probability to find particle in state 1 or 2 is 1/2
@ State will then evolve in time according to
1

T(+)<x,t) = 7 [lpl(x)efimt_i_lpz(x)efiwzt]

= el [p) e ] (29)

@ Probability to find particle in initial superposition state
is not time independent

v
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Bound states in one dimension Harmonic oscillator

@ H.O. characterized by quadratic potential == V' (x) = ’%‘2
@ Schrddinger equation

h? d? kx?
o D 1 () = By (x)

@ k = spring constant which relates to restoring force
of equivalent classical problem of mass m connected to spring

w:\/£ or k= mw?
m

@ Assume solution to be of the form
2

P(x) = f(x)exp <—7;_C) with 2 = mk/#?
which reduces Schrédinger equation to

d*f(x) o df( )—l-f( )[2mE 7} 0

dx2
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Bound states in one dimension Harmonic oscillator

@ Polynomial of order n — 1 satisfies equation if
2mE,
h2y
@ Minimal energy = E; = hw/2
@ All energy levels are separated from each other by an energy Aw
@ Explicit form of normalized wave function

+1-2n=0 or E,=hwn—-1/2) withn=1,23---

7.[71/4

_g2 .
l/)n(q)— \/Wanl(q)e q/z Wlth q:ﬁx
@ nth order Hermite polynomial defined through relation

_ 72/2 _i ! —Z2/2 _ [ nzﬂ —z
H,(z) =e (z dz) e =(-1) et e

(second expression obtained writing2 outzpowers in first expression
inserting factors of the form 1 = =7 /2¢*/2 between each factor
and performing a little algebra)
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Bound states in one dimension Harmonic oscillator

First three harmonic oscillator wave functions are '

oen=1
pila) =1
oen=2
]. 1 d _1/4 _q /2 7‘[71/4 _ 2/2
¥2(0) = 55 <q dq>( ) 75 (2a)e
en=3

~1/4 , 14 2
pala) = % <”7_ ;,) (nﬂ (29)e” /2> = ”ﬁ (242 — 1) e 7/2
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Bound states in one dimension Harmonic oscillator

¥ (g) wave functions graphed as solid lines
with associated probability densities |, (q)|? indicated as dashed lines

L. A. Anchordoqui (CUNY) Quantum Mechanics 3-19-2019 22/22



	Bound states in one dimension
	Particle in a box
	Finite square well
	Superposition and time dependence
	Harmonic oscillator




