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Introduction to wave mechanics Schrédinger equation

Time dependent Schrédinger equation

@ It is not possible to derive the Schrédinger equation
in any rigorous fashion from classical physics

@ However == it had to come from somewhere
and it is indeed possible to “derive” the Schrédinger equation
using somewhat less rigorous means
@ Consider particle with mass m and momentum py
moving in 1-dimension in potential V(x) = total energy is

pZ

@ Multiplying both sides of (1) by wave function ¢ (x, t)
should not change equality

Ey(5,0) = | 2+ V() ()

(@)

L. A. Anchordoqui (CUNY) Quantum Mechanics 11-5-2015

4/17



Introduction to wave mechanics Schrédinger equation

Time dependent Schrédinger equation (cont’d)

@ Recall de Broglie relations
px =hk, and E =hw (3)

@ Suppose wave function is plane wave traveling in x direction
with a well defined energy and momentum

P(x,1) = Age X (4)
@ Energy relation in terms of de Broglie variables becomes

thOei(kxx—wt) _ EAOei(kxx—wt) (5)

h2k>

7 T V()

. 2 .
Agellsx—wt) — LP;; + V(X)} Ageil=wh) (6)
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Introduction to wave mechanics Schrédinger equation

Time dependent Schrédinger equation (cont'd)
@ For equality in (5) to hold

Ey(nt) = i (x 1) )
@ For equality in (6) to hold
pxp(x, t) = —h;xlp(x,t) (8)

Puttin’all this together = time-dependent Schrédinger equation

. 0 h? 9?2
zhﬁtp(x,t): —%@—FV(X) P(x, t) 9)
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Introduction to wave mechanics Schrédinger equation

Time dependent Schrédinger equation (cont’d)

[an-order linear differential equation with 3 important properties]

@ it is consistent with energy conservation

@ itis linear and singular value = solutions can be constructed
by superposition of two or more independent solutions

@ free-particle solution = V(x) =0
consistent with a single de Broglie wave
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Introduction to wave mechanics Schrédinger equation

Time independent Schrédinger equation

@ If potential energy is independent of time
use mathematical technique known as separation of variables

@ Assume
p(x,t) = ¢(x) x(t) (10)
@ Substitution into time dependent Schrédinger equation yields
., 0
ihzx(t) = Ex(t) = hwx(t) (11)
h? 92
—s= + V() [ $(x) = Ep(x) (12)

@ Solution to (11) = oscillating complex exponential
@ Solution to (12) = an eigenvalue problem
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Introduction to wave mechanics Schrédinger equation

Time independent Schrddinger equation

[2nd-order linear differential equation with 3 important properties]

@ Continuity: Solutions ¥ (x) to (12) and its first derivative ¢’ (x)
must be continuous Vx (the latter holds for finite potential V' (x))

@ Normalizable: Solutions ¢(x) to (12) must be square integrable
integral of modulus squared of wave function over all space
must be finite constant so that wave function can be normalized

S lp(x)Pdx =1

@ Linearity: Given two independent solutions 11 (x) and ¢ (x)
can construct other solutions by taking superposition of these

P(x) = a1 P1(x) + a2 9o (x)

a; € C satisfying |a;|> + |a2|?> = 1 to ensure normalization.
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Introduction to wave mechanics Expectation value, observables, and operators
3
Born’s rule

@ Probability amplitude i 5= complex function
used to describe behaviour of systems

@ Probability density (probability per unit length in one dimension)
P(x)dx = |p(x)|*dx (14)
@ Probability to find particle between two points x; and x;

P(x; <x <xp) = /X2 [ (x)|?dx (15)

X1

@ Normalization = probability to find particle between (—oo, +o0)

00
[ @) =1 (16)
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Introduction to wave mechanics Expectation value, observables, and operators
Expectation value

@ We can no longer speak with certainty about particle position

@ We can no longer guarantee outcome of single measurement
(of any physical quantity that depends on position)

@ Expectation value ==
most probable outcome for single measurement
which is equivalent to average outcome for many measurements

@ E.g. = determine expected location of particle
Performing a large number of measurements
we calculate average position

_omxptmoxp o Y inx
nm—+nyg+--- Yin;

(x) (17)
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Introduction to wave mechanics Expectation value, observables, and operators

Expectation value (cont'd)

@ Number of times n; that we measure each position x;
is proportional to probability P(x;) dx
to find particle in interval dx at x;

@ Making substitution and changing sums to integrals

B [T P(x) xdx

O e L

@ Expectation value of any function f(x)

@)= [ P dx (19)

= @ =[ alp@Paxc (9
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Introduction to wave mechanics Expectation value, observables, and operators

@ State vector or wave-function ¢ == represented as “ket” |¢)
@ We express any n-dimensional vector in terms of basis vectors
@ We expand any wave function in terms of basis state vectors

[¥) = A1) + Az|¢p2) + - - - (20)

@ Alongside the ket = we define “bra” (|
@ Together = bra and ket define scalar product
—+o0

v = [

@ As for n-dimensional vector == Schwartz inequality holds

Wlp) </ (w|p) (p|¢) (22)

_ dx ¢ (x) 9(x) = (elg)” = (¥l¢) (21)
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Introduction to wave mechanics Expectation value, observables, and operators

Operators and Observables

@ Operator A = maps state vector into another A|p) = |¢)
@ Eigenstate (or eigenfunction) of A with eigenvalue a

Aly) = alyp)

@ Observable = any particle property that can be measured
@ For any observable A = there is an operator A

(A) = (plAly) = [ axy(x) Ay() 23)
e A'is called hermitian conjugate of A if
[Tty pax= [ Apax = (a'ly) = (glay) @)
@ Ais called hermitian if A" = A s (A¢|p) = (¢|Ap)
TS T Y



Introduction to wave mechanics Expectation value, observables, and operators
Commutator

@ Operators are associative but not (in general) commutative

ABlyp) = A(By)) = (AB)|y) # BAly) (25)

® Example = (i — pe)yp(x) = —in {x3 - L]} (@
by product rule of differentiation

(2P — pR)Y(x) = il (x) (27)

@ Since this must hold for any function ¢(x)
£p — pk = ik (28)

@ Short-hand notation:

A A

[A, B] = AB— BA
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Introduction to wave mechanics Free particle solution

@ A “free” particle = no external forces acting upon it = V(x) = V
@ State represented by its wave function = ¢(x) = Ae'™
@ Schrédinger equation has 4 possible solutions
2m 02 2 N
?(E —Vo)y(x) = —@w(x) =k"ip(x) tkeRord (29)

e 2 travelling waves solutions

P(x) = Ae** 4 Be7kx k= i%y/Zm(E - Vo) (E>Vy) (30)

e 2 exponentially decaying solutions

P(x) = Ae™ + Be ™ ix = :I:z% 2m(Vy —E) (E< VW)

@ Allowed energies are
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Introduction to wave mechanics Free particle solution

@ E > Vj = classically allowed
@ E < V, = classically forbidden
@ Traveling wave solutions = time evolution of probability density

P(x,t) = ¢*(x, ) (x, 1) = p* (x)e“ P(x)e ™" = p*(x)y(x) (33)
independent of time!
@ Particle traveling in only one (say +x) direction

P(x,t) = ¢*(x)p(x) = A*e At = A*A (34)

independent of position = particle completely delocalized!
@ Superposition of both positive and negative going waves

P(x,t) = (Aeikx n Bfikx>* (Ael 4+ Be~ik¥)
—  A*A 4 BB+ 2R{A*Be 2kr | gr A2k}
@ For real-valued coefficients A and B
P(x,t) = A%+ B* 4+ 2ABcos(2kx) (35)
which is equation for standing wave

L. A. Anchordoqui (CUNY) Quantum Mechanics 11-5-2015 17 /17



	Introduction to wave mechanics
	Schrödinger equation
	Expectation value, observables, and operators
	Free particle solution




