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Identical particles

Until now, our focus has largely been on the study of quantum
mechanics of individual particles.

However, most physical systems involve interaction of many (ca.
1023!) particles, e.g. electrons in a solid, atoms in a gas, etc.

In classical mechanics, particles are always distinguishable – at least
formally, “trajectories” through phase space can be traced.

In quantum mechanics, particles can be identical and
indistinguishable, e.g. electrons in an atom or a metal.

The intrinsic uncertainty in position and momentum therefore
demands separate consideration of distinguishable and
indistinguishable quantum particles.

Here we define the quantum mechanics of many-particle systems,
and address (just) a few implications of particle indistinguishability.
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Identical particles Quantum statistics

Quantum statistics: preliminaries

Consider two identical particles confined to one-dimensional box.

By “identical”, we mean particles that can not be discriminated by
some internal quantum number, e.g. electrons of same spin.

The two-particle wavefunction ⌦(x1, x2) only makes sense if

|⌦(x1, x2)|2 = |⌦(x2, x1)|2 � ⌦(x1, x2) = e i�⌦(x2, x1)

If we introduce exchange operator P̂ex⌦(x1, x2) = ⌦(x2, x1), since
P̂2

ex = I, e2i� = 1 showing that � = 0 or ⌃, i.e.

⌦(x1, x2) = ⌦(x2, x1) bosons
⌦(x1, x2) = �⌦(x2, x1) fermions

[N.B. in two-dimensions (such as fractional quantum Hall fluid)
“quasi-particles” can behave as though � �= 0 or ⌃ – anyons!]
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Identical particles Quantum statistics

Quantum statistics: preliminaries

But which sign should we choose?

⌦(x1, x2) = ⌦(x2, x1) bosons
⌦(x1, x2) = �⌦(x2, x1) fermions

All elementary particles are classified as
fermions or bosons:

1 Particles with half-integer spin are fermions and their
wavefunction must be antisymmetric under particle exchange.

e.g. electron, positron, neutron, proton, quarks, muons, etc.

2 Particles with integer spin (including zero) are bosons and their
wavefunction must be symmetric under particle exchange.

e.g. pion, kaon, photon, gluon, etc.
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Identical particles Quantum statistics

Quantum statistics: remarks

Within non-relativistic quantum mechanics, correlation between spin
and statistics can be seen as an empirical law.

However, the spin-statistics relation emerges naturally from the
unification of quantum mechanics and special relativity.

The rule that fermions have half-integer spin and
bosons have integer spin is internally consistent:

e.g. Two identical nuclei, composed of n nucleons
(fermions), would have integer or half-integer spin
and would transform as a “composite” fermion or
boson according to whether n is even or odd.
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Identical particles Spin statistics: ferminos and bosons

Quantum statistics: fermions

To construct wavefunctions for three or more fermions, let us
suppose that they do not interact, and are confined by a
spin-independent potential,

Ĥ =
⇣

i

Ĥs [p̂i , ri ], Ĥs[p̂, r] =
p̂2

2m
+ V (r)

Eigenfunctions of Schrödinger equation involve products of states of
single-particle Hamiltonian, Ĥs.

However, simple products ⌦a(1)⌦b(2)⌦c(3) · · · do not have required
antisymmetry under exchange of any two particles.

Here a, b, c , ... label eigenstates of Ĥs, and 1, 2, 3,... denote both
space and spin coordinates, i.e. 1 stands for (r1, s1), etc.
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Identical particles Spin statistics: ferminos and bosons

Quantum statistics: fermions

We could achieve antisymmetrization for particles 1 and 2 by
subtracting the same product with 1 and 2 interchanged,

⌦a(1)⌦b(2)⌦c(3) ✏ [⌦a(1)⌦b(2)� ⌦a(2)⌦b(1)]⌦c(3)

However, wavefunction must be antisymmetrized under all possible
exchanges. So, for 3 particles, we must add together all 3!
permutations of 1, 2, 3 in the state a, b, c with factor �1 for each
particle exchange.

Such a sum is known as a Slater determinant:

⌦abc(1, 2, 3) =
1
3!

⇧⇧⇧⇧⇧⇧

⌦a(1) ⌦b(1) ⌦c(1)
⌦a(2) ⌦b(2) ⌦c(2)
⌦a(3) ⌦b(3) ⌦c(3)

⇧⇧⇧⇧⇧⇧

and can be generalized to N, ⌦i1,i2,···iN (1, 2, · · ·N) = det(⌦i (n))
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Identical particles Spin statistics: ferminos and bosons

Quantum statistics: fermions

⌦abc(1, 2, 3) =
1
3!

⇧⇧⇧⇧⇧⇧

⌦a(1) ⌦b(1) ⌦c(1)
⌦a(2) ⌦b(2) ⌦c(2)
⌦a(3) ⌦b(3) ⌦c(3)

⇧⇧⇧⇧⇧⇧

Antisymmetry of wavefunction under particle exchange follows from
antisymmetry of Slater determinant, ⌦abc(1, 2, 3) = �⌦abc(1, 3, 2).

Moreover, determinant is non-vanishing only if all three states a, b,
c are di⇤erent – manifestation of Pauli’s exclusion principle: two
identical fermions can not occupy the same state.

Wavefunction is exact for non-interacting fermions, and provides a
useful platform to study weakly interacting systems from a
perturbative scheme.
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Identical particles Spin statistics: ferminos and bosons

Quantum statistics: bosons

In bosonic systems, wavefunction must be symmetric under particle
exchange.

Such a wavefunction can be obtained by expanding all of terms
contributing to Slater determinant and setting all signs positive.

i.e. bosonic wave function describes uniform (equal phase)
superposition of all possible permutations of product states.
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Identical particles Spin statistics: ferminos and bosons

Space and spin wavefunctions

When Hamiltonian is spin-independent, wavefunction can be
factorized into spin and spatial components.

For two electrons (fermions), there are four basis states in spin
space: the (antisymmetric) spin S = 0 singlet state,

| S✓ =
1
2

(| ⌦1↵2✓ � | ↵1⌦2✓)

and the three (symmetric) spin S = 1 triplet states,

| 1
T✓ = | ⌦1⌦2✓, | 0

T✓ =
1
2

(| ⌦1↵2✓ + | ↵1⌦2✓) , | �1
T ✓ = | ↵1↵2✓
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Identical particles Spin statistics: ferminos and bosons

Space and spin wavefunctions

For a general state, total wavefunction for two electrons:

⇥(r1, s1; r2, s2) = ⌦(r1, r2) (s1, s2)

where  (s1, s2) = ⌘s1, s2| ✓.
For two electrons, total wavefunction, ⇥, must be antisymmetric
under exchange.

i.e. spin singlet state must have symmetric spatial wavefunction;
spin triplet states have antisymmetric spatial wavefunction.

For three electron wavefunctions, situation becomes challenging...
see notes.

The conditions on wavefunction antisymmetry imply spin-dependent
correlations even where the Hamiltonian is spin-independent, and
leads to numerous physical manifestations...
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Identical particles Hydrogen molecule

Example I: Specific heat of hydrogen H2 gas

With two spin 1/2 proton degrees of freedom, H2 can adopt a spin
singlet (parahydrogen) or spin triplet (orthohydrogen) wavefunction.

Although interaction of proton spins is negligible, spin statistics
constrain available states:

Since parity of state with rotational angular momentum ⇣ is given
by (�1) , parahydrogen having symmetric spatial wavefunction has
⇣ even, while for orthohydrogen ⇣ must be odd.

Energy of rotational level with angular
momentum ⇣ is

E rot
 =

1

2I
⇥2⇣(⇣ + 1)

where I denotes moment of inertia �
very di⇤erent specific heats (cf. IB).

Specific heat ☛  amount of heat required to change unit mass of substance by one degree in temperature
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Identical particles Hydrogen molecule

HDice Target – Polarization Process

H2
(~0.0005)

HD
(~0.9990)

D2
(~0.0005)
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Identical particles Helium atom

Example II: Excited states spectrum of Helium

Ĥ(0) =
2⇣

n=1

�
p̂2

n

2m
+ V (rn)

 

In this approximation, ground state wavefunction involves both
electrons in 1s state � antisymmetric spin singlet wavefunction,
|⇥g.s.✓ = (|100✓ ⇧ |100✓)| S✓.
Previously, we have used perturbative theory to determine how
ground state energy is perturbed by electron-electron interaction,

Ĥ(1) =
1

4⌃⇥0

e2

|r1 � r2|

What are implications of particle statistics on spectrum of lowest
excited states?

Example II: Excited states spectrum of Helium
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Identical particles Helium atom

Example II: Excited states spectrum of Helium

Ground state wavefunction belongs to class of states with
symmetric spatial wavefunctions, and antisymmetric spin (singlet)
wavefunctions – parahelium.

In the absence of electron-electron interaction, Ĥ(1), first excited
states in the same class are degenerate:

|⌦para✓ =
1
2

(|100✓ ⌃ |2⇣m✓ + |2⇣m✓ ⌃ |100✓) | S✓

Second class have antisymmetric spatial wavefunction, and
symmetric (triplet) spin wavefunction – orthohelium. Excited
states are also degenerate:

|⌦ortho✓ =
1
2

(|100✓ ⌃ |2⇣m✓ � |2⇣m✓ ⌃ |100✓) | ms

T ✓
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Identical particles Helium atom

Example II: Excited states spectrum of Helium

|⌦p,o✓ =
1
2

(|100✓ ⌃ |2⇣m✓ ±| 2⇣m✓ ⌃ |100✓) | ms

S,T ✓

Despite degeneracy, since o⇤-diagonal matrix elements between
di⇤erent m, ⇣ values vanish, we can invoke first order perturbation
theory to determine energy shift for ortho- and parahelium,

�Ep,o
n = ⌘⌦p,o|Ĥ(1)|⌦p,o✓

=
1

2

e2

4⌃⇥0

✓
d3r1d

3r2
|⌦100(r1)⌦n 0(r2) ± ⌦n 0(r1)⌦100(r2)|2

|r1 � r2|

(+) parahelium and (-) orthohelium.

N.B. since matrix element is independent of m, m = 0 value
considered here applies to all values of m.
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Identical particles Forces preventing cold stars from gravitational collapse

Recap: Identical particles

In quantum mechanics, all elementary particles are classified as
fermions and bosons.

1 Particles with half-integer spin are described by fermionic
wavefunctions, and are antisymmetric under particle exchange.

2 Particles with integer spin (including zero) are described by
bosonic wavefunctions, and are symmetric under exchange.

Exchange symmetry leads to development of (ferro)magnetic spin
correlations in Fermi systems even when Hamiltonian is spin
independent.

Also leads to Pauli exclusion principle for fermions – manifest in
phenomenon of degeneracy pressure.

For an ideal gas of fermions, the ground state is defined by a filled
Fermi sea of particles with an energy density

Etot

L3
=

⇥2

20⌃2m
(6⌃2n)5/3
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Identical particles Forces preventing cold stars from gravitational collapse

Example II: Degeneracy pressure

Cold stars are prevented from collapse by the pressure exerted by
“squeezed” fermions.

Crab pulsar

White dwarfs are supported by electron-degenerate matter, and
neutron stars are held up by neutrons in a much smaller box.
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Identical particles Forces preventing cold stars from gravitational collapse

Example II: Degeneracy pressure

From thermodynamics, dE = F · ds = �PdV , i.e. pressure

P = �✏V Etot

To determine point of star collapse, we must
compare this to the pressure exerted by gravity:

With density ⌥, gravitational energy,

EG = �
✓

GMdm

r
= �

✓ R

0

G ( 4
3⌃r3⌥)4⌃r2dr ⌥

r
= �3GM2

5R

Since mass of star dominated by nucleons, M � NMN ,
EG � � 3

5G (NMN)2( 4⇧
3V )

1
3 , and gravitational pressure,

PG = �✏V EG = �1

5
G (NMN)2

⌃
4⌃

3

⌥1/3

V�4/3
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Identical particles Forces preventing cold stars from gravitational collapse

Example II: Degeneracy pressure

PG = �✏V EG = �1

5
G (NMN)2

⌃
4⌃

3

⌥1/3

V�4/3

At point of instability, PG balanced by degeneracy pressure. Since

fermi gas has energy density Etot

L3 = �2

20⇧2m (6⌃2n)5/3, with n = Ne

V ,

EWD =
⇥2

20⌃2me
(6⌃2Ne)

5/3V�2/3

From this expression, obtain degeneracy pressure

PWD = �✏V EWD =
⇥2

60⌃2me
(6⌃2Ne)

5/3V�5/3

Leads to critical radius of white dwarf:

Rwhite dwarf �
⇥2N

5/3
e

GmeM2
NN2

� 7, 000km
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Identical particles Forces preventing cold stars from gravitational collapse

Example II: Degeneracy pressure

White dwarf is remnant of a normal star which
has exhausted its fuel fusing light elements
into heavier ones (mostly 6C and 8O).

If white dwarf acquires more mass, EF rises
until electrons and protons abruptly combine
to form neutrons and neutrinos – supernova –
leaving behind neutron star supported by
degeneracy.

From Rwhite dwarf � �2N5/3
e

GmeM2
NN2 we can estimate the critical radius for

a neutron star (since NN ⌥ Ne ⌥ N),

Rneutron

Rwhite dwarf
� me

MN
� 10�3, i.e. Rneutron � 10km

If the pressure at the center of a neutron star becomes too great, it
collapses forming a black hole.
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Identical particles Entangelment

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy�s NNSA 

U N C L A S S I F I E D 

QM & causality: 

! Entanglement 
•  A spin-zero particle decays into two spin-½ particles 
•  If left-side particle (LSP) is measured along a 

chosen direction as +½, then right-side particle 
(RSP) is measured as -½ along this same chosen 
direction (because angular momentum conserved) 

•  In this state of affairs the spins are “entangled”; that 
is, they’re correlated 

•  Since the state of the LSP is, in general, a 
superposition of +½ & -½, it’s spin is unknown until 
measured 

•  Then the state of the RSP is fixed (along the chosen 
direction) seemingly instantaneously ?! 

—  And this is weird. 
—  Or, at least, appears to conflict with special 

relativity (Einstein) 
—  But it doesn’t conflict: there’s no way to transfer 

information using these entangled states 

Slide 16 

Einstein, Podolsky, & Rosen were upset 
by this state of affairs. They were right to 
be upset. But QM has proven itself.  
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