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Definition 1: A field is a set F together with two operations + and · for
which all the axioms below hold ∀ λ, µ, ν ∈ F:

closure→ the sum λ + µ and the product λ · µ again belong to F
associative law→ λ + (µ + ν) = (λ + µ) + ν and
λ · (µ · ν) = (λ · µ) · ν
commutative law→ λ + ν = ν + λ and λ · µ = µ · λ
distributive laws→ λ · (µ + ν) = λ · µ + λ · ν and
(λ + µ) · ν = λ · ν + µ · ν
existence of an additive identity→ there exists an element 0 ∈ F
for which λ + 0 = λ

existence of a multiplicative identity→ there exists an element
1 ∈ F, with 1 6= 0 for which 1 · λ = λ

existence of additive inverse→ to every λ ∈ F, there corresponds
an additive inverse −λ, such that −λ + λ = 0
existence of multiplicative inverse→ to every λ ∈ F, there
corresponds a multiplicative inverse λ−1, such that λ−1 · λ = 1

Example: R and C
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Definition 2: A vector space over the field F is a set V on which two
operations are defined (called addition + and scalar multiplication ·)
that must satisfy the axioms below ∀ x, y, w ∈ V and ∀ λ, µ ∈ F:

closure→ the sum x + y and the scalar multiplication λ · x are
uniquely defined and belong to V
commutative law of vector addition→ x + y = y + x
associative law of vector addition→ x + (y + w) = (x + y) + w
existence of an additive identity→ there exists an element 0 ∈ V
such that x + 0 = x
existence of additive inverses→ to every element x ∈ V there
corresponds an inverse element −x, such that −x + x = 0
associative law of scalar multiplication→ (λ · µ) · x = λ · (µ · x)
distributive laws of scalar multiplication→
(λ + µ) · x = λ · x + µ · x and λ · (x + y) = λ · x + λ · y
unitary law→ 1 · x = x

Example: For any field F + set Fn of n-tuples is vector space over F
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Cartesian space Rn + prototypical example of real n-dimensional V:

Let x = (x1, · · · , xn) be an ordered n-tuple of real numbers xi, to which
there corresponds a point x with these Cartesian coordinates and a
vector x with these components. We define addition of vectors by
component addition

x + y = (x1 + y1, · · · , xn + yn)

and scalar multiplication by component multiplication

λ x = (λx1, · · · , λxn)

Definition 3: Given a vector space V over a field F, a subset W of V is
called a subspace if W is a vector space over F under the operations
already defined on V
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After defining notions of vector spaces and subspaces + next
step is to identify functions that can be used to relate one vector
space to another
These functions should respect algebraic structure of vector
spaces + so it is reasonable to require that they preserve addition
and scalar multiplication

Definition 4: Let V and W be vector spaces over the field F. A linear
transformation from V to W is a function T : V →W such that

T(λx + µy) = λT(x) + µT(y)

for all vectors x, y ∈ V and all scalars λ, µ ∈ F. If a linear
transformation is one-to-one and onto, it is called a vector space
isomorphism, or simply an isomorphism.
Definition 5: Let S = {x1, · · · , xn} be a set of vectors in the vector
space V over the field F. Any vector of the form y = ∑n

i=1 λixi, for
λi ∈ F, is called a linear combination of the vectors in S. The set S is
said to span V if each element of V can be expressed as a linear
combination of the vectors in S.
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Definition 6: Let x1, · · · , xm be m given vectors and λ1, · · · λm an equal
number of scalars. Then we can form a linear combination or sum

λ1x1 + · · ·+ λkxk + · · ·+ λmxm

which is also an element of the vector space. Suppose there exist
values λ1 · · · λn, which are not all zero, such that the above vector sum
is the zero vector. Then the vectors x1, · · · , xm are said to be linearly
dependent. Contrarily, the vectors x1, · · · , xm are called linearly
independent if

λ1x1 + · · ·+ λkxk + · · ·+ λmxm = 0

demands the scalars λk must all be zero.
Definition 7: The dimension of V is the maximal number of linearly
independent vectors of V
Definition 8: Let V be an n dimensional vector space and

S = {x1, · · · , xn} ⊂ V

a linearly independent spanning set for V + S is called a basis of V
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Definition 9: An inner product 〈 , 〉 : V ×V → F is a function that takes
each ordered pair (x, y) of elements of V to a number 〈x, y〉 ∈ F and
has the following properties:

conjugate symmetry or Hermiticity→ 〈x, y〉 = (〈y, x〉)∗
linearity in the second argument→ 〈x, y + w〉 = 〈x, y〉+ 〈x, w〉
and 〈x, λ y〉 = λ〈x, y〉
definiteness→ 〈x, x〉 = 0⇔ x = 0

Definition 10: An inner product 〈 , 〉 is said to be positive definite⇔ for
all non-zero x in V, 〈x, x〉 ≥ 0
Definition 11: An inner product space is a vector space V over the
field F equipped with an inner product 〈 , 〉 : V ×V → F
Definition 12: The vector space V on F endowed with a positive
definite inner product (a.k.a. scalar product) defines the Euclidean
space E
Example: For x, y ∈ Rn + 〈x, y〉 = x · y = ∑n

k=1 xkyk
Example: For x, y ∈ Cn + 〈x, y〉 = x · y = ∑n

k=1 x∗k yk
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Example:
Let C([a, b]) denote the set of continuous functions x(t) defined on
the closed interval −∞ < a ≤ t ≤ b < ∞

This set is structured as a vector space with respect to the usual
operations of sum of functions and product of functions by
numbers, whose neutral element is the zero function
For x(t), y(t) ∈ C([a, b]) + we can define the scalar product:
〈x, y〉 =

∫ b
a x∗(t) y(t) dt which satisfies all the necessary axioms

In particular + 〈x, x〉 =
∫ b

a |x(t)|2dt ≥ 0 and if 〈x, x〉 = 0

then 0 =
∫ b

a |x(t)|2 dt ≥
∫ b1

a1
|x(t)|2 dt ≥ 0 ∀a ≤ a1 ≤ b1 ≤ b

therefore + x(t) ≡ 0

Indeed + since x(t) is continuous, if x(t0) 6= 0 with a ≤ t0 ≤ b
then x(t) 6= 0 in an interval of such point + contradiction
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Definition 13: The axiom of positivity allows one to define a norm or
length for each vector of an euclidean space

‖x‖ = +
√
〈x, x〉

In particular + ‖x‖ = 0⇔ x = 0
Further + if λ ∈ C then ‖λx‖ =

√
|λ|2〈x, x〉 = |λ|‖x‖

This allows a normalization for any non-zero length vector
Indeed + if x 6= 0 then ‖x‖ > 0
Thus + we can take λ ∈ C such that |λ| = ‖x‖−1 and y = λx
It follows that ‖y‖ = |λ|‖x‖ = 1.

Example: The length of a vector x ∈ Rn is

‖x‖ =
(

n

∑
k=1

x2
k

)1/2

Example: The length of a vector x ∈ C2([a, b]) is

‖x‖ =
{∫ b

a
|x(t)|2 dt

}1/2
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Definition 14: In a real Euclidean space the angle between the
vectors x and y is defined by

cos x̂y =
|〈x, y〉|
‖x‖‖y‖

Definition 15: Two vectors are orthogonal, x ⊥ y, if 〈x, y〉 = 0. The
zero vector is orthogonal to every vector in E .
Definition 16: In a real Euclidean space the angle between two
orthogonal non-zero vectors is π/2, i.e. cos x̂y = 0
Definition 17: The angle between two complex vectors is given by

cos x̂y =
Re(|〈x, y〉|)
‖x‖‖y‖

Definition 18: A basis x1, · · · , xn of E is called orthogonal if
〈xi, xj〉 = 0 for all i 6= j. The basis is called orthonormal if, in addition,
each vector has unit length, i.e., ‖xi‖ = 1, ∀i = 1, · · · , n.
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Example: Simplest example of orthonormal basis is standard basis

e1 =




1
0
0
...
0
0




, e2 =




0
1
0
...
0
0




, · · · en =




0
0
0
...
0
1




Definition 19: A Hilbert space H is a vector space that
has an inner product
is “complete” + which means limits work nicely

Hilbert spaces are possibly-infinite-dimensional analogues
of the finite-dimensional Euclidean spaces

Example: Any finite dimensional inner product space is H
Example: The space l2 of infinite sequences of complex numbers
l2 = {(x1, x2, x3, · · · ) : xk ∈ C, ∑∞

k=1 |xk|2 < ∞} with 〈y, x〉 = ∑∞
k=1 y∗k xk
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Example: The space L2 defined by the collection of measurable real
or complex valued square integrable functions

∫ ∞

−∞
|ψ(t)|2 dt < ∞

endowed with inner product

〈Ψ, Φ〉 =
∫ b

a
ψ∗(t) φ(t) dt

and associated norm

‖Ψ‖ =
{∫ ∞

−∞
|ψ(t)|2 dt

}1/2

is an infinite dimensional Hilbert space H

Linear Operators on Euclidean Spaces

Definition 20:
An operator A on E is a vector function A : E → E
The operator is called linear if

A(αx + βy) = αAx + βAy, ∀x, y ∈ E and ∀α, β ∈ C (or R)
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Definition 21: Let A be an n× n matrix and x a vector:
the function A(x) = Ax is obviously a linear operator
a vector x 6= 0 is an eigenvector of A if ∃ λ satisfying A x = λ x
in such a case + (A− λ1) x = 0 with 1 the identity matrix
eigenvalues λ are given by the relation det (A− λ1) = 0
which has m different roots with 1 ≤ m ≤ n
(note that det(A− λ1) is a polynomial of degree n)
The eigenvectors associated with the eigenvalue λ can be
obtained by solving the (singular) linear system (A− λ1) x = 0

Definition 22: A complex square matrix A is Hermitian if A = A†

+ A† = (A∗)T is the conjugate transpose of a complex matrix
Definition 23: A linear operator A on a Hilbert space H
is symmetric if 〈Ax, y〉 = 〈x, Ay〉, ∀ x and y in the domain of A
Definition 24: A symmetric everywhere defined operator is called
self-adjoint or Hermitian
Example: If we take as H the Hilbert space Cn with the standard dot
product and interpret a Hermitian square matrix A as a linear operator
on H + we have: 〈x, Ay〉 = 〈Ax, y〉, ∀ x, y ∈ Cn
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Definition 25: Dirac delta function as a limit
Consider the function

gε(x) =
{

1/ε |x| ≤ ε/2
0 |x| > ε/2

with ε > 0
It follows that

∫ +∞
−∞ gε(x) dx = 1 ∀ε > 0

In addition + if f is an arbitrary continuous function
∫ +∞

−∞
gε(x) f (x)dx = ε−1

∫ +ε/2

−ε/2
f (x) dx =

F(ε/2)− F(−ε/2)
ε

,

where F is the primitive of f
For ε→ 0+ + gε(x) is concentrated near the origin yielding

lim
ε→0+

∫ +∞

−∞
gε(x) f (x) dx = lim

ε→0+

F(ε/2)− F(−ε/2)
ε

= F′(0) = f (0)
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We can define the distribution (or generalized function) as the limit

δ(x) = lim
ε→0+

gε(x)

satisfying ∫ +∞

−∞
δ(x) f (x) dx = f (0)

Although limit δ(x) does not strictly exist
(it is 0 if x 6= 0 and ∞ if x = 0)

limit of integral ∃ ∀ f continuous in an interval centered at x = 0
and this is the meaning of δ(x)

We will consider from now on test functions f
which are bounded and differentiable functions to any order
and which vanish outside a finite range I
Remember first and foremost that such functions exist + e.g.

if f (x) = 0, for x ≤ 0 and x ≥ 1
and f (x) = e−1/x2

e−1/(1−x)2
, for |x| < 1

then the function f has derivatives of any order at x = 0 and x = 1
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Many other gε(x) converge to δ(x) + with derivatives of all orders

A well-known example + δ(x) = limε→0+
e−x2/2ε2
√

2πε
Indeed +

1√
2πε

∫ +∞

−∞
e−x2/2ε2

dx = 1 ∀ε > 0

and
lim

ε→0+

1√
2πε

∫ +∞

−∞
e−x2/2ε2

f (x)dx = f (0)

Here +

gε(x) =
1√

2π ε
e−x2/2ε2

is the normal (or Gaussian) distribution of area 1 and variance
∫ +∞

−∞
gε x2 dx = ε2

When ε→ 0+ + gε(x) concentrates around x = 0
keeping its area constant
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3.2. INITIAL VALUE PROBLEM 73

If mt  f(x)  Mt, with x 2 [�t, t] ) mt  If  Mt 8t > 0 and since f is continuous,
limt!0+ Mt = limt!0+ mt = f(0) and we obtain If = f(0).

Other widely used examples are

�(x) = � 1

⇡
lim
✏!0+

=m


1

x + i✏

�
=

1

⇡
lim
✏!0

✏

x2 + ✏2
(3.131)

and

�(x) =
1

⇡
lim
✏!0+

✏
sin2(x/✏)

x2
, (3.132)

which are associated to g(x) = 1/[⇡(1 + x2)] and g(x) = sin2(x)/(⇡x2), respectively. As
an illustration, in Fig. 3.2 we show a sequence of functions converging to the �.

The Heaviside function 6

0

0.2

0.4

0.6

0.8

1

1.2

-4 -2 0 2 4
x

Figure 1.1. Sequence of functions converging to the delta function.

We can also think of the �-function as the limit of various sequences of regular functions,
for example

�(x) = lim
✏�0

1

�

�

�2 + x2

since

lim
✏�0

1

�

�

�2 + x2
= 0 if x �= 0

and � �

��

1

�

�

�2 + x2
dx =

1

�
arctan

�
x

�

�����
�

��
= 1

for any � > 0, so that

lim
✏�0

� �

��

1

�

�

�2 + x2
dx = 1,

see figure 1.1. This definition has a physical interpretation in terms of a very large force acting
over a very short time. In applications the delta function can be used to represent an impulse,
eg. when a string is hit with a hammer. In other words, it is a tremendously useful tool in
understanding “mathematics for piano tuners”.

Aside:

If f(x) is any function such that
��
� f(x)dx = 1 then

lim
��0

1

�
f(x/�) = �(x)

Say �(x) is a test function. Then, with the change of variable y = x/�,

lim
��0

� �

��

1

�
f(x/�)�(x)dx = lim

��0

� �

��
f(y)�(�y)dy =

� �

��
f(y)�(0)dy = �(0)

� �

��
f(y)dy = �(0)

x

g✏(x)

Figure 3.2: The delta function as a limit (in the sense of distributions).

Definition 3.22 The convolution of �(x) with other functions is defined in such a way
that the integration rules still hold. For example

Z +1

�1
�(x � x0)f(x)dx =

Z +1

�1
�(u) f(u + x0)du = f(x0) . (3.133)

Similarly, if a 6= 0
Z +1

�1
�(ax)f(x)dx =

1

|a|

Z +1

�1
�(u) f(u/a)du =

1

|a|f(0) , (3.134)

and so
�(ax) =

1

|a|�(x) a 6= 0 . (3.135)

In particular, �(�x) = �(x).
If g(x) is invertible and differentiable with a single root x1 (i.e. g(x1) = 0) and

g0(x1) 6= 0, we obtain
Z +1

�1
� (g(x)) f(x) dx =

Z r+

r�
�(u)

f
�
g�1(u)

�

|g0 (g�1(u)) |du =
f(x1)

|g0(x1)|
, (3.136)

The delta function as a limit in the sense of distributions
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Definition 26: The convolution of δ(x) with other functions
is defined in such a way that the integration rules still hold

For example +

∫ +∞

−∞
δ(x− x0) f (x)dx =

∫ +∞

−∞
δ(u) f (u + x0)du = f (x0)

Similarly + if a 6= 0
∫ +∞

−∞
δ(ax) f (x)dx =

1
|a|
∫ +∞

−∞
δ(u) f (u/a)du =

1
|a| f (0)

and so
δ(ax) =

1
|a|δ(x) a 6= 0 .

In particular + δ(−x) = δ(x)
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Definition 27: Integration by parts
If we want δ to fulfill the usual equalities of integration by parts
we must define the derivative

∫ +∞

−∞
δ′(x) f (x) dx = −

∫ +∞

−∞
δ(x) f ′(x) dx = − f ′(0) ,

recalling that f = 0 outside a finite interval
In general +

∫ +∞

−∞
δ(n)(x) f (x) dx = (−1)n f (n)(0)

f ′(x0) = −
∫ +∞
−∞ δ′(x− x0) f (x)dx

f (n)(x0) = (−1)n ∫ +∞
−∞ δ(n)(x− x0) f (x) dx

If a 6= 0 +

δ(n)(ax) =
1

an|a|δ
(n)(x)

In particular + δ(n)(−x) = (−1)nδ(n)(x)
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Corollary + Heaviside function: The step (Heaviside) function

Θ(x) =
{

1 x ≥ 0
0 x < 0

is the “primitive” (at least in symbolic form) of δ(x)

Equivalently + Θ′(x) has the symbolic limit δ(x)

PROOF. For any given test function f (x) + integration by parts leads to
∫ +∞

−∞
Θ′(x) f (x) dx = −

∫ +∞

−∞
Θ(x) f ′(x) dx = −

∫ ∞

0
f ′(x) dx = f (0)

therefore Θ′(x) = δ(x)
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