Prof. Anchordoqui

Problems set # 8‘ Physics 400 April 4, 2019

1. A particle of mass m moving in one dimension is confined to a space 0 < & < L by an infinite
well potential. In addition, the particle experiences a delta function potential of strength A\ given
by Ad(x — L/2) located at the center of the well. Find a transcendental equation for the energy
eigenvalues E in terms of the mass m, the potential strength A, and the size of the well L.

2. A repulsive short-range potential with a strongly attractive core can be approximated by a
square barrier with a delta function at its center, namely,
hg?

V(@) = Vo8(al - ) - 2L 5(a)

(i) Show that there is a negative energy eigenstate (the ground-state). (i) If Fy is the ground-
state energy of the delta-function potential in the absence of the positive potential barrier, then the
ground-state energy of the present system satisfies the relation E > Eg+ V. What is the particular
value of Vj for which we have the limiting case of a ground-state with zero energy.

3. Consider a one-dimensional potential with a step-function component and an attractive delta
function component just at the edge of the step, namely,
h2g
2m

V(z)=VO(x)— d(z)

(i) For E >V, compute the reflection coefficient for particle incident from the left. How does this
result differ from that of the step barrier alone at high energy? (i) For E < 0 determine the energy
eigenvalues and eigenfunctions of any bound-state solutions.

4. A particle of mass m is confined to a space 0 < z < a in one dimension by infinitely high
walls at £ = 0 and z = a. At t = 0 the particle is initially in the left half of the well with a wave
function given by

V2/a 0<zx<a/2
U(z,0) = / /
0 a/2<z<a
(i) Find the time-dependent wave function W(x,t). (%) What is the probability that the particle is
in the n-th eigenstate of the well at time t7 (7ii) Derive an expression for average value of particle
energy. What is the physical meaning of your result?

5. An electron moves in one dimension and is confined to the right half-space (z > 0) where it

has potential energy
2

e
Viz) = ——
(z) 4x
where e is the electron charge. The corresponding Schrodinger equation is
h? d%p 2
——— — —¢ =EyY=—|ElY,

2m dx? Az



since £ < 0 for a bound state. (i) What is the solution of the Schrodinger equation at large x?
(7i) What is the boundary condition at x = 07 (%ii) Use the results of (i) and (i) to guess the
ground state solution of the equation. Remember the ground state wave function has no zeros
except at the boundaries. (iv) Find the ground state energy. (v) Find the expectation value (Z) in
the ground state.



1.

SOLUTIONS

We have two regions to consider:

Region I: 0 < z < L/2 The solution is
Yr(x) = Ay sinkx

which already incorporates the boundary condition v;(z = 0) = 0.

Region II: /2 <z < L The solution is
¢11(x) = AQ sin k(x — L)
which already incorporates the boundary condition ¢;(z = L) = 0.
At x = L/2, we have
w](x = L/2) = wjj(x = L/Q) — Al = Ag

The first derivative is discontinuous at x = L/2 and we have

2mA
V(e = L/2) = 1w = L/2) = —5=r(z = L/2)
o kL kL A kL kL h?
2
— Ak cos 5 Ak cos -5 = g; sin o5 — tanT =
Therefore, we have a transcendental equation for
h2k?

k— E =

2m



Let us define

o _ 2m|E| o _ 2m(lE] + Vo)

— 2
H_fﬂ’q_T’ﬁ

The Schrodinger equation is

2mVy

VP = K2 x| > a
V=g |zl <a

The discontinuity at the origin gives
¥ (0+4) = ¢'(0-) = —g*¥(0)

Odd parity solutions do not see the attractive delta function (they must be zero
at the origin) and thus cannot exist for £ < 0. Even parity solutions of the
above equations have the form

Ae—rlel |z| > a
V(@) = ol 4 Ce—alel
Be?®l 4+ Ce™1 lz| < a
Continuity at x = a and x = 0 leads to the condition (eigenvalue equation)

e2qa (1_92/2(]) _g— K

1+9¢2/2¢) q+k

In the case of vanishing Vjy, we recover the equation

B2 2\ 2
Eo=—— (L
2m \ 2
appropriate to a delta function well.

Since the RHS of the eigenvalue equation is always positive, we necessarily have

2m 4
1—92/2q>0:>ﬁ(—E+V0)2 gz

or

B2 2\ 2
E<Vi— 2 (L) =v+E
2m \ 2

One can see graphically that the above eigenvalue equation has only one solution,

by defining

2
§=qa . A=%2  b=fa



Then, we have

2 (£—A> /e
£+ A €4 /€2 — b2
The solution exists provided that A > b. In the limiting case, A = b, or,
equivalently,
52 = 2mVy _ f
h? 4

we get a vanishing ground state energy.

3 o ( ) ) The wave function will be of the form

() ek 4 Be~tkr 2 <
T) = .
Cetkz x>0

omE om(E — V)
k = — p— s ——
Vo o 47 )

Continuity of the wave function at x = 0 gives

with

1+B=C

Integrating the Schrodinger equation over the infinitesimal interval around
the origin gives

— I @' (04) — ¢/ (0-)) = 5 94(0)
1-B=—;(g+iq)C

From the two relationships between B and C we obtain

_ 2
¢= I+q/k—ig/k
B — 1—q/k+ig/k

I+q/k—ig/k

The reflection coefficient is

_ (hk/m)|BI* _ ‘ 1 —q/k+ig/k | (1 —a/k)* + g*/K?

Jr _
ks m (1+q/k)" + g%/k?

Ji

%:

1+q/k—ig/k
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In the high energy limit we have

h2
R=J
8mE
For the pure step barrier we have (in the same limit)
V2
R=—
8E?

which drops off faster with energy.

In order to study the case of negative energy, I© < 0, it is convenient to
introduce the notation

2m |E| 2m(V + |E))
K_ = h2 ; R4 = hQ

Then we can write the bound-state wave function as

AI"\J_QZ‘
@b(a:):{ e r <0

Ae "% x>0
The discontinuity at the origin implies that

I (CAky — Ak ) =94

2m
Ky +ho =9
This then gives
2 2 2
oL L
2h2g% \ 2m
and )
2 2 2
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"t = page ( 2m iv)
and




4. ( 7 ) The eigenfunctions and eigenvalues of H for this system are

2 2252
wn(x):\ﬁsin@ L B, =TT =123,
a

a 2ma?
We then have

oo

(@, ) =Y anthy(w)e Fnt/n

n=1

We evaluate the a,, coefficients using the initial wavefunction

¥(@.0) = 3 auin(x)
szp(x, 0) o () d = ni:;l a bf%(@%(@m _ 21 Y S,
so that
. o/
0 = /w(x,O)wk(x)dx _ % / sin M:Txdx _ % (1 _ cos %”)
Therefore, O O

O
2 /2 1 nm NTEX _;n2x%n,

¢(x>t) - ; E n;l E (1 — COS 7) sin Te_ 2ma?

( 11 ) The probability of being in the n" eigenstate is

4 nm 2
2
Po=lanl” = 155 (1= 0 5




( Yy ) We have

(B) = (| H ) = }:ELP E:E%MM Tmﬂql(1—aﬁ%;f

which does not converge! It takes an infinite amount of energy to form
the initial wavefunction because of the sharp edges!

5. ( 7 ) For x — oo this equation becomes

2y h2a2
a2 =Y

= |E

2m

which has the solution
—

Y(r — o00) =e

(1) The boundary condition at x = 0 is ¥(0) =

(i1)  We try the solution



which satisfies all boundary conditions if f(0) =0 and lim, . f(z;* —
0. Substituting into the Schrodinger equation we get

me2

2h2x

me2

2h2x

(f"(w) —2af' () + f(:z:)) e =0— f'(x2)2af (z)+ f(x) =0

The solution to this equation is unique so that we only need to guess an ex-
pression for f(x) that satisfies the equation and the boundary conditions.

We find

me? 1
f(x) = x with a e I
The full solution is then
Y(x) = Aze™*

where A is the normalization constant.

This is the solution for the ground sate since it has zeroes only at the
boundaries (z = 0 and z — o0). We find A by

200 2 2002—2 AQOOQ_ A2 A?
1:A/\w(x)\d:c=A/xe d:c:&? yeydy:&?F(S):@%A:Zx
0 0 0
(1v)
En = _hQOZQ _ _m€4 . _i _1 ground—state
7 2m 32h2 Bag 4 hwdrogen



( (V) ) We then have

(] |4) =//¢\w v'| 2 |x) (z | ) deda’ 77O¢\:vx5fv—w ) (x| ¢) deda’
0 0

0 0
= [ W) z(z|P)de = [ z|p(x)|] de = A? | de 2%y
/ [ [
3
= 2 gy =2 = 6ap



