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1. A particle of mass m moving in one dimension is confined to a space 0 < x < L by an infinite

well potential. In addition, the particle experiences a delta function potential of strength λ given

by λδ(x − L/2) located at the center of the well. Find a transcendental equation for the energy

eigenvalues E in terms of the mass m, the potential strength λ, and the size of the well L.

2. A repulsive short-range potential with a strongly attractive core can be approximated by a

square barrier with a delta function at its center, namely,

V (x) = V0Θ(|x| − a)− }g2

2m
δ(x)

(i) Show that there is a negative energy eigenstate (the ground-state). (ii) If E0 is the ground-

state energy of the delta-function potential in the absence of the positive potential barrier, then the

ground-state energy of the present system satisfies the relation E ≥ E0+V0. What is the particular

value of V0 for which we have the limiting case of a ground-state with zero energy.

3. Consider a one-dimensional potential with a step-function component and an attractive delta

function component just at the edge of the step, namely,

V (x) = VΘ(x)− }2g
2m

δ(x)

(i) For E > V , compute the reflection coefficient for particle incident from the left. How does this

result differ from that of the step barrier alone at high energy? (ii) For E < 0 determine the energy

eigenvalues and eigenfunctions of any bound-state solutions.

4. A particle of mass m is confined to a space 0 < x < a in one dimension by infinitely high

walls at x = 0 and x = a. At t = 0 the particle is initially in the left half of the well with a wave

function given by

Ψ(x, 0) =

{ √
2/a 0 < x < a/2

0 a/2 < x < a

(i) Find the time-dependent wave function Ψ(x, t). (ii) What is the probability that the particle is

in the n-th eigenstate of the well at time t? (iii) Derive an expression for average value of particle

energy. What is the physical meaning of your result?

5. An electron moves in one dimension and is confined to the right half-space (x > 0) where it

has potential energy

V (x) = − e
2

4x
where e is the electron charge. The corresponding Schrödinger equation is

− }2

2m

d2ψ

dx2
− e2

4x
ψ = Eψ = −|E|ψ ,



since E < 0 for a bound state. (i) What is the solution of the Schrödinger equation at large x?

(ii) What is the boundary condition at x = 0? (iii) Use the results of (i) and (ii) to guess the

ground state solution of the equation. Remember the ground state wave function has no zeros

except at the boundaries. (iv) Find the ground state energy. (v) Find the expectation value 〈x̂〉 in

the ground state.



SOLUTIONS

1.

2. (ii) [Â, B̂]/2 + {Â, B̂}/2 = (ÂB̂ � B̂Â)/2 + (ÂB̂ + B̂Â)/2 = ÂB̂. (iii) {Â, B̂}† = (ÂB̂)† +

(B̂Â)† = B̂†Â† + Â†B̂† = {Â, B̂}, so the anticommutator is hermitian. [Â, B̂]† = (ÂB̂)† � (B̂Â)† =

B̂†Â† � Â†B̂† = �(ÂB̂ � B̂Â) = �[Â, B̂], so the commutator is anti-Hermitian. (iv) An anti-

hermitian operator is equal to the negative of its hermitian conjugate, that is Â† = �Â. In inner

products this means h�|Â i = hÂ†�| i = �hÂ�| i. The expectation value of an anti-hermitian

operator is: h |Â i = hÂ† | i = �hÂ | i = �hAi⇤. But h |Â i = hAi, so hAi = �hAi⇤, which

means the expectation value must be pure imaginary.

3. For E < V0, the solutions for zones I and II are

 I(x) = A sin(kx) +B cos(kx) and  II(x) = Ce�x +Dex, (1)

where k =
p
2mE/} and  =

p
2m(V0 � E)/}. Imposing the boundary conditions we have

 I(x = 0) = 0 ) B = 0, (2)

 II(x = 2L) = 0 ) Ce�2L +De2L = 0 ) D = �Ce�4L . (3)

Imposing continuity of the wave function at x = L we obtain

 I(x = L) =  II(x = L) ) A sin kL = Ce�L +DeL (4)

and

 0
I(x = L) =  0

II(x = L) ) Ak cos kL = 
�
�Ce�L +DeL

�
. (5)

Substituting the expression for D in (4) and (5) we have

A sin(kL) = C(e�L � e�3L) and Ak cos kL = �C(e�L + e�3L) . (6)

Taking the ratio of these two expressions we get

 tan(kL) = �k
1 � e�2L

1 + e�2L
, orequivalently  tan(kL) = �k tanh(2L) . (7)

(iii) For E > V0, the solutions for zones I and II are

 I(x) = A sin(k1x) and  II(x) = B sin(k2x) . (8)

Imposing the continuity condition on  (x) and  0(x) at x = L we obtain

k2 tan(k1L) = �k1 tan(k22L) . (9)

In Fig. 1 we show the first four eigenstates for E < 0 and E > 0.

4. The wavefunction  (x) for a particle with energy E in a potential V (x) satisfies the Schrödinger

equation. Inside the well (0  x  L), the particle is free. The wave function is  I(x) = A sin(kx),
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1-Dimensional Quantum Systems

8.15 Problems

8.15.1 Delta function in a well

A particle of mass m moving in one dimension is confined to a space 0 < x <
L by an infinite well potential. In addition, the particle experiences a delta
function potential of strength � given by ��(x � L/2) located at the center of
the well as shown in Figure 8.1 below.

Figure 8.1: Potential Diagram

Find a transcendental equation for the energy eigenvalues E in terms of the
mass m, the potential strength �, and the size of the well L.

We have two regions to consider:

Region I: 0  x  L/2 The solution is

 I(x) = A1 sin kx

155which already incorporates the boundary condition  I(x = 0) = 0.

Region II: L/2  x  L The solution is

 II(x) = A2 sin k(x� L)

which already incorporates the boundary condition  II(x = L) = 0.

At x = L/2, we have

 I(x = L/2) =  II(x = L/2) ! A1 = A2

The first derivative is discontinuous at x = L/2 and we have

 0
II(x = L/2)�  0

I(x = L/2) =
2m�

~2  I(x = L/2)

or

�A1k cos
kL

2
�A1k cos

kL

2
=

2m�

~2 sin
kL

2
! tan

kL

2
= �

~2
m�

k

Therefore, we have a transcendental equation for

k ! E =
~2k2
2m

8.15.2 Properties of the wave function

A particle of mass m is confined to a one-dimensional region 0  x  a (an
infinite square well potential). At t = 0 its normalized wave function is

 (x, t = 0) =

r
8

5a

⇣
1 + cos

⇣⇡x
a

⌘⌘
sin

⇣⇡x
a

⌘

For an infinite square well we have

 n(x) =

r
2

a
sin

n⇡x

a
, En =

n2⇡2~2
2ma2

, n = 1, 2, 3, .....

And any arbitrary wave function can be expanded in this basis, that is,

 (x, t) =
X

n

Ane
�iEnt/~ n(x)

We have

 (x, t = 0) =

r
8

5a

⇣
1 + cos

⇣⇡x
a

⌘⌘
sin

⇣⇡x
a

⌘

This can be written

 (x, t = 0) =

r
8

5a

⇣
1 + cos

⇣⇡x
a

⌘⌘
sin

⇣⇡x
a

⌘

=

r
8

5a
sin

⇣⇡x
a

⌘
+

r
2

5a
sin

✓
2⇡x

a

◆

=

r
4

5
 1(x) +

r
1

5
 2(x)
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(b) If E0 is the ground-state energy of the delta-function potential in the
absence of the positive potential barrier, then the ground-state energy
of the present system satisfies the relation E � E0 + V0. What is the
particular value of V0 for which we have the limiting case of a ground-
state with zero energy.

Let us define

2 =
2m |E|

~2 , q2 =
2m(|E|+ V0)

~2 , �2 =
2mV0

~2

The Schrodinger equation is

 00 = 2 |x| > a
 00 = q2 |x| < a

The discontinuity at the origin gives

 0(0+)�  0(0�) = �g2 (0)

Odd parity solutions do not see the attractive delta function (they must be zero
at the origin) and thus cannot exist for E < 0. Even parity solutions of the
above equations have the form

 (x) =

(
Ae�|x|

|x| > a

Beq|x| + Ce�q|x|
|x| < a

Continuity at x = a and x = 0 leads to the condition (eigenvalue equation)

e2qa
✓
1� g2/2q

1 + g2/2q

◆
=

q � 

q + 

In the case of vanishing V0, we recover the equation

E0 = �
~2
2m

✓
g2

2

◆2

appropriate to a delta function well.

Since the RHS of the eigenvalue equation is always positive, we necessarily have

1� g2/2q > 0 )
2m

~2 (�E + V0) �
g4

4

or

E  V0 �
~2
2m

✓
g2

2

◆2

= V + E0

One can see graphically that the above eigenvalue equation has only one solution,
by defining

⇠ = qa , � =
g2a

2
, b = �a
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SOLUTIONS

1.

2. (ii) [Â, B̂]/2 + {Â, B̂}/2 = (ÂB̂ � B̂Â)/2 + (ÂB̂ + B̂Â)/2 = ÂB̂. (iii) {Â, B̂}† = (ÂB̂)† +

(B̂Â)† = B̂†Â† + Â†B̂† = {Â, B̂}, so the anticommutator is hermitian. [Â, B̂]† = (ÂB̂)† � (B̂Â)† =

B̂†Â† � Â†B̂† = �(ÂB̂ � B̂Â) = �[Â, B̂], so the commutator is anti-Hermitian. (iv) An anti-

hermitian operator is equal to the negative of its hermitian conjugate, that is Â† = �Â. In inner

products this means h�|Â i = hÂ†�| i = �hÂ�| i. The expectation value of an anti-hermitian

operator is: h |Â i = hÂ† | i = �hÂ | i = �hAi⇤. But h |Â i = hAi, so hAi = �hAi⇤, which

means the expectation value must be pure imaginary.

3. For E < V0, the solutions for zones I and II are

 I(x) = A sin(kx) +B cos(kx) and  II(x) = Ce�x +Dex, (1)

where k =
p
2mE/} and  =

p
2m(V0 � E)/}. Imposing the boundary conditions we have

 I(x = 0) = 0 ) B = 0, (2)

 II(x = 2L) = 0 ) Ce�2L +De2L = 0 ) D = �Ce�4L . (3)

Imposing continuity of the wave function at x = L we obtain

 I(x = L) =  II(x = L) ) A sin kL = Ce�L +DeL (4)

and

 0
I(x = L) =  0

II(x = L) ) Ak cos kL = 
�
�Ce�L +DeL

�
. (5)

Substituting the expression for D in (4) and (5) we have

A sin(kL) = C(e�L � e�3L) and Ak cos kL = �C(e�L + e�3L) . (6)

Taking the ratio of these two expressions we get

 tan(kL) = �k
1 � e�2L

1 + e�2L
, orequivalently  tan(kL) = �k tanh(2L) . (7)

(iii) For E > V0, the solutions for zones I and II are

 I(x) = A sin(k1x) and  II(x) = B sin(k2x) . (8)

Imposing the continuity condition on  (x) and  0(x) at x = L we obtain

k2 tan(k1L) = �k1 tan(k22L) . (9)

In Fig. 1 we show the first four eigenstates for E < 0 and E > 0.

4. The wavefunction  (x) for a particle with energy E in a potential V (x) satisfies the Schrödinger

equation. Inside the well (0  x  L), the particle is free. The wave function is  I(x) = A sin(kx),



Then, we have

e2⇠
✓
⇠ � �

⇠ + �

◆
=
⇠ �

p
⇠2 � b2

⇠ +
p
⇠2 � b2

The solution exists provided that � � b. In the limiting case, � = b, or,
equivalently,

�2 =
2mV0

~2 =
g4

4
we get a vanishing ground state energy.

8.15.4 Step and Delta Functions

Consider a one-dimensional potential with a step-function component and an
attractive delta function component just at the edge of the step, namely,

V (x) = V⇥(x)�
~2g
2m

�(x)

(a) For E > V , compute the reflection coe�cient for particle incident from
the left. How does this result di↵er from that of the step barrier alone at
high energy?

The wave function will be of the form

 (x) =

(
eikx +Be�ikx x < 0

Ceikx x > 0

with

k =

r
2mE

~ , q =

r
2m(E � V )

~
Continuity of the wave function at x = 0 gives

1 +B = C

Integrating the Schrodinger equation over the infinitesimal interval around
the origin gives

�
~2

2m ( 0(0+)�  0(0�)) = ~2g
2m (0)

1�B = �
i
k (g + iq)C

From the two relationships between B and C we obtain

C = 2
1+q/k�ig/k

B = 1�q/k+ig/k
1+q/k�ig/k

The reflection coe�cient is

< =

����
jr
jl

���� =
(~k/m) |B|

2

~k/m =

����
1� q/k + ig/k

1 + q/k � ig/k

����
2

=
(1� q/k)2 + g2/k2

(1 + q/k)2 + g2/k2
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e2⇠
✓
⇠ � �

⇠ + �

◆
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p
⇠2 � b2
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p
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32

to solve for E given a particular a, b, and V0.

Although we know the parts of the energy eigenstate in each region, we must

ensure that they match at x = 0, and therefore find

�(x) =

�
��

��

A sin[(k(x + a)] for �a  x  0

�A sin(ka)
sinh(b) sinh[�(x � b)] for 0  x  +b

(3.13)

for �I(x) and �II(x), apart from normalization.

Figure 3.1: The first four energy eigenstates for the asymmetric infinite square well
with E < V0. In all of the images h̄ = 2m = 1, V0 = 33, and a = b = 3.

As an example of a typical set of position-space energy eigenstates, in Figure

3.1 we have chosen V0 = 33 and h̄ = 2m = 1 to visualize these states (properly

normalized). For the first four states, corresponding to E < V0, the energy eigenstate

is mostly confined to the left half of the well.

Since we know the position-space energy eigenstate, �(x), we can Fourier trans-

35

Figure 3.3: The first four energy eigenstates for the asymmetric infinite square well
with E > V0. In all of the images h̄ = 2m = 1, V0 = 33, and a = b = 3.

at an antinode, contrary to what we generally expect for an energy eigenstate in a

region with a varying potential energy function. Also, as noted in [11], this surprising

result is due solely to the abrupt discontinuity in the potential energy function. If

the potential step is smoothed even slightly, the results in general agree much better

with the classical expectations.

Since we know the position-space energy eigenstate as defined in Eqn. (3.19), we

can Fourier transform it to find the momentum-space energy eigenstate,

�(p) =
1

2�

 
�keiap + k cos(ak) + ip sin(ak)

�k2 + p2

+
csc(bq) sin(ak)[qe�ibp � q cos(bq) + ip sin(bq)]

�p2 + q2

!

, (3.20)

apart from overall normalization.

The same states shown in Figure 3.3 in position space are shown in Figure 3.4 in

Figure 1: The first four energy eigenstates for the asymmetric infinite square well with E < V0

(left) and E > V0 (right). In all of the images we have taken } = 2m = 1, V0 = 33, and L = 3.

where k =
p
2mE/}. Outside the well (L < x < 1), the potential has constant value V > E.

The wave function is  II(x) = Be�x, where  =
p

2m(V0 � E)/}.  (x) and its derivative are

continuous at x = L, then A sin kL = Be�L and Ak cos kL = �Be�L, from which

k cot kL = � . (10)

Now, since cot2 ✓ + 1 = csc2 ✓, (10) can be rewritten as k2(csc2 ✓ � 1) = �2, where ✓ = kL. After

some algebra the trascendental equation can be rewritten as

✓ csc ✓ = ±a, (11)

where a =
p
2mV0L2/h. Note that (11) are equations for the allowed values of k. The equation

with the positive sign yields values of ✓ in the second quadrant. The equation with the negative

sign yields values of ✓ in the fourth quadrant. Since sin ✓  ✓ 8✓, it follows from (11) that there are

no bound states if 2mV0L2/}2  1.

5. (i) In region I, where x < 0, Schrödinger equation is given by

@2 I

@x2
+

2mE

}2
 I = 0 )  I = Aeik1x +Be�ik1x, (12)

while in region II, where x > 0, we have

@2
II 

@x2
+

2m(E + V0)

}2
 II = 0 )  II = Ceik2x . (13)

Demanding continuity of  and  0 at x � 0 we obtain

 I(x = 0) =  II = 0 ) A+B = C (14)

and

 0
I(x = 0) =  00

II(x = 0) ) ik1(A � B) = ik2C (15)

Substituting (14) into (15) we get

ik1(A � B) = ik2(A+B) or equivalently A(k1 � k2) = B(k1 + k2) . (16)



In the high energy limit we have

< =
g~2
8mE

For the pure step barrier we have (in the same limit)

< =
V 2

8E2

which drops o↵ faster with energy.

(b) For E < 0 determine the energy eigenvalues and eigenfunctions of any
bound-state solutions.

In order to study the case of negative energy, E < 0, it is convenient to
introduce the notation

� =

r
2m |E|

~2 , + =

r
2m(V + |E|)

~2

Then we can write the bound-state wave function as

 (x) =

(
Ae�x x < 0

Ae�+x x > 0

The discontinuity at the origin implies that

�
~2

2m (�A+ �A�) =
~2g
2mA

+ + � = g

This then gives

E = �
m

2~2g2

✓
~2g2
2m

� V

◆2

and

2± =
m2

~4g2

✓
~2g2
2m

± V

◆2

and

A =

r
2+�

g

8.15.5 Atomic Model

An approximate model for an atom near a wall is to consider a particle moving
under the influence of the one-dimensional potential given by

V (x) =

(
�V0�(x) x > �d

1 x < �d

as shown in Figure 8.2 below.
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This leads to B/A = (k1 � k2)/(k1 + k2). The reflection coeficcient is then

R =

����
B

A

����
2

=

✓
k1 � k2

k1 + k2

◆2

=

 p
E �

p
E + V0p

E +
p
E + V0

!2

, (17)

whereas the transmissivity is given by

T = 1 � R =
4k1k2

(k1 + k2)2
=

4
p
E(E + V0)

(
p
E + V0 +

p
E)2

. (18)

(ii) Taking V0 = 12 MeV and E = 4 MeV we obtain T = 8/9.



SOLUTIONS

1.

2. (ii) [Â, B̂]/2 + {Â, B̂}/2 = (ÂB̂ � B̂Â)/2 + (ÂB̂ + B̂Â)/2 = ÂB̂. (iii) {Â, B̂}† = (ÂB̂)† +

(B̂Â)† = B̂†Â† + Â†B̂† = {Â, B̂}, so the anticommutator is hermitian. [Â, B̂]† = (ÂB̂)† � (B̂Â)† =

B̂†Â† � Â†B̂† = �(ÂB̂ � B̂Â) = �[Â, B̂], so the commutator is anti-Hermitian. (iv) An anti-

hermitian operator is equal to the negative of its hermitian conjugate, that is Â† = �Â. In inner

products this means h�|Â i = hÂ†�| i = �hÂ�| i. The expectation value of an anti-hermitian

operator is: h |Â i = hÂ† | i = �hÂ | i = �hAi⇤. But h |Â i = hAi, so hAi = �hAi⇤, which

means the expectation value must be pure imaginary.

3. For E < V0, the solutions for zones I and II are

 I(x) = A sin(kx) +B cos(kx) and  II(x) = Ce�x +Dex, (1)

where k =
p
2mE/} and  =

p
2m(V0 � E)/}. Imposing the boundary conditions we have

 I(x = 0) = 0 ) B = 0, (2)

 II(x = 2L) = 0 ) Ce�2L +De2L = 0 ) D = �Ce�4L . (3)

Imposing continuity of the wave function at x = L we obtain

 I(x = L) =  II(x = L) ) A sin kL = Ce�L +DeL (4)

and

 0
I(x = L) =  0

II(x = L) ) Ak cos kL = 
�
�Ce�L +DeL

�
. (5)

Substituting the expression for D in (4) and (5) we have

A sin(kL) = C(e�L � e�3L) and Ak cos kL = �C(e�L + e�3L) . (6)

Taking the ratio of these two expressions we get

 tan(kL) = �k
1 � e�2L

1 + e�2L
, orequivalently  tan(kL) = �k tanh(2L) . (7)

(iii) For E > V0, the solutions for zones I and II are

 I(x) = A sin(k1x) and  II(x) = B sin(k2x) . (8)

Imposing the continuity condition on  (x) and  0(x) at x = L we obtain

k2 tan(k1L) = �k1 tan(k22L) . (9)

In Fig. 1 we show the first four eigenstates for E < 0 and E > 0.

4. The wavefunction  (x) for a particle with energy E in a potential V (x) satisfies the Schrödinger

equation. Inside the well (0  x  L), the particle is free. The wave function is  I(x) = A sin(kx),

Therefore, if

V0d >
~2
2m

then there exists at least one bound state.

8.15.6 A confined particle

A particle of mass m is confined to a space 0 < x < a in one dimension by
infinitely high walls at x = 0 and x = a. At t = 0 the particle is initially in the
left half of the well with a wave function given by

 (x, 0) =

(p
2/a 0 < x < a/2

0 a/2 < x < a

(a) Find the time-dependent wave function  (x, t).

The eigenfunctions and eigenvalues of Ĥ for this system are

 n(x) =

r
2

a
sin

n⇡x

a
, En =

n2⇡2~2
2ma2

, n = 1, 2, 3, ......

We then have

 (x, t) =
1X

n=1

an n(x)e
�iEnt/~

We evaluate the an coe�cients using the initial wavefunction

 (x, 0) =
1P

n=1
an n(x)

aR

0
 (x, 0) k(x)dx =

1P
n=1

an
aR

0
 n(x) k(x)dx =

1P
n=1

an�nk = ak

so that

ak =

aZ

0

 (x, 0) k(x)dx =
2

a

a/2Z

0

sin
k⇡x

a
dx =

2

k⇡

✓
1� cos

k⇡

2

◆

Therefore,

 (x, t) =
2

⇡

r
2

a

1X

n=1

1

n

⇣
1� cos

n⇡

2

⌘
sin

n⇡x

a
e�in

2
⇡
2~

2ma2 t

(b) What is the probability that the particle is in the nth eigenstate of the
well at time t?

The probability of being in the nth eigenstate is

Pn = |an|
2 =

4

n2⇡2

⇣
1� cos

n⇡

2

⌘2
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(b) What is the probability that the particle is in the nth eigenstate of the
well at time t?
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Pn = |an|
2 =

4

n2⇡2

⇣
1� cos
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2
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to solve for E given a particular a, b, and V0.

Although we know the parts of the energy eigenstate in each region, we must

ensure that they match at x = 0, and therefore find

�(x) =

�
��

��

A sin[(k(x + a)] for �a  x  0

�A sin(ka)
sinh(b) sinh[�(x � b)] for 0  x  +b

(3.13)

for �I(x) and �II(x), apart from normalization.

Figure 3.1: The first four energy eigenstates for the asymmetric infinite square well
with E < V0. In all of the images h̄ = 2m = 1, V0 = 33, and a = b = 3.

As an example of a typical set of position-space energy eigenstates, in Figure

3.1 we have chosen V0 = 33 and h̄ = 2m = 1 to visualize these states (properly

normalized). For the first four states, corresponding to E < V0, the energy eigenstate

is mostly confined to the left half of the well.

Since we know the position-space energy eigenstate, �(x), we can Fourier trans-
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Figure 3.3: The first four energy eigenstates for the asymmetric infinite square well
with E > V0. In all of the images h̄ = 2m = 1, V0 = 33, and a = b = 3.

at an antinode, contrary to what we generally expect for an energy eigenstate in a

region with a varying potential energy function. Also, as noted in [11], this surprising

result is due solely to the abrupt discontinuity in the potential energy function. If

the potential step is smoothed even slightly, the results in general agree much better

with the classical expectations.

Since we know the position-space energy eigenstate as defined in Eqn. (3.19), we

can Fourier transform it to find the momentum-space energy eigenstate,

�(p) =
1

2�

 
�keiap + k cos(ak) + ip sin(ak)

�k2 + p2

+
csc(bq) sin(ak)[qe�ibp � q cos(bq) + ip sin(bq)]

�p2 + q2

!

, (3.20)

apart from overall normalization.

The same states shown in Figure 3.3 in position space are shown in Figure 3.4 in

Figure 1: The first four energy eigenstates for the asymmetric infinite square well with E < V0

(left) and E > V0 (right). In all of the images we have taken } = 2m = 1, V0 = 33, and L = 3.

where k =
p
2mE/}. Outside the well (L < x < 1), the potential has constant value V > E.

The wave function is  II(x) = Be�x, where  =
p

2m(V0 � E)/}.  (x) and its derivative are

continuous at x = L, then A sin kL = Be�L and Ak cos kL = �Be�L, from which

k cot kL = � . (10)

Now, since cot2 ✓ + 1 = csc2 ✓, (10) can be rewritten as k2(csc2 ✓ � 1) = �2, where ✓ = kL. After

some algebra the trascendental equation can be rewritten as

✓ csc ✓ = ±a, (11)

where a =
p
2mV0L2/h. Note that (11) are equations for the allowed values of k. The equation

with the positive sign yields values of ✓ in the second quadrant. The equation with the negative

sign yields values of ✓ in the fourth quadrant. Since sin ✓  ✓ 8✓, it follows from (11) that there are

no bound states if 2mV0L2/}2  1.

5. (i) In region I, where x < 0, Schrödinger equation is given by

@2 I

@x2
+

2mE

}2
 I = 0 )  I = Aeik1x +Be�ik1x, (12)

while in region II, where x > 0, we have

@2
II 

@x2
+

2m(E + V0)

}2
 II = 0 )  II = Ceik2x . (13)

Demanding continuity of  and  0 at x � 0 we obtain

 I(x = 0) =  II = 0 ) A+B = C (14)

and

 0
I(x = 0) =  00

II(x = 0) ) ik1(A � B) = ik2C (15)

Substituting (14) into (15) we get

ik1(A � B) = ik2(A+B) or equivalently A(k1 � k2) = B(k1 + k2) . (16)

This leads to B/A = (k1 � k2)/(k1 + k2). The reflection coeficcient is then

R =

����
B

A

����
2

=

✓
k1 � k2

k1 + k2

◆2

=

 p
E �

p
E + V0p

E +
p
E + V0

!2

, (17)

whereas the transmissivity is given by

T = 1 � R =
4k1k2

(k1 + k2)2
=

4
p
E(E + V0)

(
p
E + V0 +

p
E)2

. (18)

(ii) Taking V0 = 12 MeV and E = 4 MeV we obtain T = 8/9.



SOLUTIONS

1.

2. (ii) [Â, B̂]/2 + {Â, B̂}/2 = (ÂB̂ � B̂Â)/2 + (ÂB̂ + B̂Â)/2 = ÂB̂. (iii) {Â, B̂}† = (ÂB̂)† +

(B̂Â)† = B̂†Â† + Â†B̂† = {Â, B̂}, so the anticommutator is hermitian. [Â, B̂]† = (ÂB̂)† � (B̂Â)† =

B̂†Â† � Â†B̂† = �(ÂB̂ � B̂Â) = �[Â, B̂], so the commutator is anti-Hermitian. (iv) An anti-

hermitian operator is equal to the negative of its hermitian conjugate, that is Â† = �Â. In inner

products this means h�|Â i = hÂ†�| i = �hÂ�| i. The expectation value of an anti-hermitian

operator is: h |Â i = hÂ† | i = �hÂ | i = �hAi⇤. But h |Â i = hAi, so hAi = �hAi⇤, which

means the expectation value must be pure imaginary.

3. For E < V0, the solutions for zones I and II are

 I(x) = A sin(kx) +B cos(kx) and  II(x) = Ce�x +Dex, (1)

where k =
p
2mE/} and  =

p
2m(V0 � E)/}. Imposing the boundary conditions we have

 I(x = 0) = 0 ) B = 0, (2)

 II(x = 2L) = 0 ) Ce�2L +De2L = 0 ) D = �Ce�4L . (3)

Imposing continuity of the wave function at x = L we obtain

 I(x = L) =  II(x = L) ) A sin kL = Ce�L +DeL (4)

and

 0
I(x = L) =  0

II(x = L) ) Ak cos kL = 
�
�Ce�L +DeL

�
. (5)

Substituting the expression for D in (4) and (5) we have

A sin(kL) = C(e�L � e�3L) and Ak cos kL = �C(e�L + e�3L) . (6)

Taking the ratio of these two expressions we get

 tan(kL) = �k
1 � e�2L

1 + e�2L
, orequivalently  tan(kL) = �k tanh(2L) . (7)

(iii) For E > V0, the solutions for zones I and II are

 I(x) = A sin(k1x) and  II(x) = B sin(k2x) . (8)

Imposing the continuity condition on  (x) and  0(x) at x = L we obtain

k2 tan(k1L) = �k1 tan(k22L) . (9)

In Fig. 1 we show the first four eigenstates for E < 0 and E > 0.

4. The wavefunction  (x) for a particle with energy E in a potential V (x) satisfies the Schrödinger

equation. Inside the well (0  x  L), the particle is free. The wave function is  I(x) = A sin(kx),

(c) Derive an expression for average value of particle energy. What is the
physical meaning of your result?

We have

hEi = h | Ĥ | i =
X

n

EnPn =
X

n

En |an|
2 =

2~2
ma2

X

n

⇣
1� cos

n⇡

2

⌘2

which does not converge! It takes an infinite amount of energy to form
the initial wavefunction because of the sharp edges!

8.15.7 1/x potential

An electron moves in one dimension and is confined to the right half-space
(x > 0) where it has potential energy

V (x) = �
e2

4x

where e is the charge on an electron.

The corresponding 1D Schrodinger equation is

�
~2
2m

d2 

dx2
�

e2

4x
 = E = � |E| 

since E < 0 for a bound state.

(a) What is the solution of the Schrodinger equation at large x?

For x ! 1 this equation becomes

d2 

dx2
� ↵2 = 0 ,

~2↵2

2m
= |E|

which has the solution
 (x ! 1) = e�↵x

(b) What is the boundary condition at x = 0?

The boundary condition at x = 0 is  (0) = 0.

(c) Use the results of (a) and (b) to guess the ground state solution of the
equation. Remember the ground state wave function has no zeros except
at the boundaries.

We try the solution
 (x) = f(x)e�↵x
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to solve for E given a particular a, b, and V0.

Although we know the parts of the energy eigenstate in each region, we must

ensure that they match at x = 0, and therefore find

�(x) =

�
��

��

A sin[(k(x + a)] for �a  x  0

�A sin(ka)
sinh(b) sinh[�(x � b)] for 0  x  +b

(3.13)

for �I(x) and �II(x), apart from normalization.

Figure 3.1: The first four energy eigenstates for the asymmetric infinite square well
with E < V0. In all of the images h̄ = 2m = 1, V0 = 33, and a = b = 3.

As an example of a typical set of position-space energy eigenstates, in Figure

3.1 we have chosen V0 = 33 and h̄ = 2m = 1 to visualize these states (properly

normalized). For the first four states, corresponding to E < V0, the energy eigenstate

is mostly confined to the left half of the well.

Since we know the position-space energy eigenstate, �(x), we can Fourier trans-
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Figure 3.3: The first four energy eigenstates for the asymmetric infinite square well
with E > V0. In all of the images h̄ = 2m = 1, V0 = 33, and a = b = 3.
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region with a varying potential energy function. Also, as noted in [11], this surprising

result is due solely to the abrupt discontinuity in the potential energy function. If

the potential step is smoothed even slightly, the results in general agree much better

with the classical expectations.
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Figure 1: The first four energy eigenstates for the asymmetric infinite square well with E < V0

(left) and E > V0 (right). In all of the images we have taken } = 2m = 1, V0 = 33, and L = 3.

where k =
p
2mE/}. Outside the well (L < x < 1), the potential has constant value V > E.

The wave function is  II(x) = Be�x, where  =
p
2m(V0 � E)/}.  (x) and its derivative are

continuous at x = L, then A sin kL = Be�L and Ak cos kL = �Be�L, from which

k cot kL = � . (10)

Now, since cot2 ✓ + 1 = csc2 ✓, (10) can be rewritten as k2(csc2 ✓ � 1) = �2, where ✓ = kL. After

some algebra the trascendental equation can be rewritten as

✓ csc ✓ = ±a, (11)

where a =
p
2mV0L2/h. Note that (11) are equations for the allowed values of k. The equation

with the positive sign yields values of ✓ in the second quadrant. The equation with the negative

sign yields values of ✓ in the fourth quadrant. Since sin ✓  ✓ 8✓, it follows from (11) that there are

no bound states if 2mV0L2/}2  1.

5. (i) In region I, where x < 0, Schrödinger equation is given by

@2 I

@x2
+

2mE

}2
 I = 0 )  I = Aeik1x +Be�ik1x, (12)

while in region II, where x > 0, we have

@2
II 

@x2
+

2m(E + V0)

}2
 II = 0 )  II = Ceik2x . (13)

Demanding continuity of  and  0 at x � 0 we obtain

 I(x = 0) =  II = 0 ) A+B = C (14)

and

 0
I(x = 0) =  00

II(x = 0) ) ik1(A � B) = ik2C (15)

Substituting (14) into (15) we get

ik1(A � B) = ik2(A+B) or equivalently A(k1 � k2) = B(k1 + k2) . (16)

This leads to B/A = (k1 � k2)/(k1 + k2). The reflection coeficcient is then

R =

����
B

A

����
2

=

✓
k1 � k2

k1 + k2

◆2

=

 p
E �

p
E + V0p

E +
p
E + V0

!2

, (17)

whereas the transmissivity is given by

T = 1 � R =
4k1k2

(k1 + k2)2
=

4
p

E(E + V0)

(
p
E + V0 +

p
E)2

. (18)

(ii) Taking V0 = 12 MeV and E = 4 MeV we obtain T = 8/9.

SOLUTIONS

1.

2. (ii) [Â, B̂]/2 + {Â, B̂}/2 = (ÂB̂ � B̂Â)/2 + (ÂB̂ + B̂Â)/2 = ÂB̂. (iii) {Â, B̂}† = (ÂB̂)† +

(B̂Â)† = B̂†Â† + Â†B̂† = {Â, B̂}, so the anticommutator is hermitian. [Â, B̂]† = (ÂB̂)† � (B̂Â)† =

B̂†Â† � Â†B̂† = �(ÂB̂ � B̂Â) = �[Â, B̂], so the commutator is anti-Hermitian. (iv) An anti-

hermitian operator is equal to the negative of its hermitian conjugate, that is Â† = �Â. In inner

products this means h�|Â i = hÂ†�| i = �hÂ�| i. The expectation value of an anti-hermitian

operator is: h |Â i = hÂ† | i = �hÂ | i = �hAi⇤. But h |Â i = hAi, so hAi = �hAi⇤, which

means the expectation value must be pure imaginary.

3. For E < V0, the solutions for zones I and II are

 I(x) = A sin(kx) +B cos(kx) and  II(x) = Ce�x +Dex, (1)

where k =
p
2mE/} and  =

p
2m(V0 � E)/}. Imposing the boundary conditions we have

 I(x = 0) = 0 ) B = 0, (2)

 II(x = 2L) = 0 ) Ce�2L +De2L = 0 ) D = �Ce�4L . (3)

Imposing continuity of the wave function at x = L we obtain

 I(x = L) =  II(x = L) ) A sin kL = Ce�L +DeL (4)

and

 0
I(x = L) =  0

II(x = L) ) Ak cos kL = 
�
�Ce�L +DeL

�
. (5)

Substituting the expression for D in (4) and (5) we have

A sin(kL) = C(e�L � e�3L) and Ak cos kL = �C(e�L + e�3L) . (6)

Taking the ratio of these two expressions we get

 tan(kL) = �k
1 � e�2L

1 + e�2L
, orequivalently  tan(kL) = �k tanh(2L) . (7)

(iii) For E > V0, the solutions for zones I and II are

 I(x) = A sin(k1x) and  II(x) = B sin(k2x) . (8)

Imposing the continuity condition on  (x) and  0(x) at x = L we obtain

k2 tan(k1L) = �k1 tan(k22L) . (9)

In Fig. 1 we show the first four eigenstates for E < 0 and E > 0.

4. The wavefunction  (x) for a particle with energy E in a potential V (x) satisfies the Schrödinger

equation. Inside the well (0  x  L), the particle is free. The wave function is  I(x) = A sin(kx),

(c) Derive an expression for average value of particle energy. What is the
physical meaning of your result?

We have

hEi = h | Ĥ | i =
X

n

EnPn =
X

n

En |an|
2 =

2~2
ma2

X

n

⇣
1� cos

n⇡

2

⌘2

which does not converge! It takes an infinite amount of energy to form
the initial wavefunction because of the sharp edges!

8.15.7 1/x potential

An electron moves in one dimension and is confined to the right half-space
(x > 0) where it has potential energy

V (x) = �
e2

4x

where e is the charge on an electron.

The corresponding 1D Schrodinger equation is

�
~2
2m

d2 

dx2
�

e2

4x
 = E = � |E| 

since E < 0 for a bound state.

(a) What is the solution of the Schrodinger equation at large x?

For x ! 1 this equation becomes

d2 

dx2
� ↵2 = 0 ,

~2↵2

2m
= |E|

which has the solution
 (x ! 1) = e�↵x

(b) What is the boundary condition at x = 0?

The boundary condition at x = 0 is  (0) = 0.

(c) Use the results of (a) and (b) to guess the ground state solution of the
equation. Remember the ground state wave function has no zeros except
at the boundaries.

We try the solution
 (x) = f(x)e�↵x
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which satisfies all boundary conditions if f(0) = 0 and limx!1 f(x�ax
e !

0. Substituting into the Schrodinger equation we get

✓
f 00(x)� 2↵f 0(x) +

me2

2h2x
f(x)

◆
e�↵x = 0 ! f 00(x)�2↵f 0(x)+

me2

2h2x
f(x) = 0

The solution to this equation is unique so that we only need to guess an ex-
pression for f(x) that satisfies the equation and the boundary conditions.
We find

f(x) = x with ↵ =
me2

4h2
=

1

4a0

The full solution is then
 (x) = Axe�↵x

where A is the normalization constant.

This is the solution for the ground sate since it has zeroes only at the
boundaries (x = 0 and x ! 1). We find A by

1 = A2

1Z

0

| (x)|2dx = A2

1Z

0

x2e�2↵xdx =
A2

8↵3

1Z

0

y2e�ydy =
A2

8↵3
�(3) =

A2

4↵3
! A = 2↵3/2

(d) Find the ground state energy.

E0 = �
~2↵2

2m
= �

me4

32~2 = �
e2

8a0
=

1

4
Eground�state

hydrogen

(e) Find the expectation value hx̂i in the ground state.

We then have

h | x̂ | i =

1Z

0

1Z

0

h | x0
i hx0

| x̂ |xi hx |  i dxdx0 =

1Z

0

1Z

0

h | x0
ix�(x� x0) hx |  i dxdx0

=

1Z

0

h | xix hx |  i dx =

1Z

0

x | (x)|2 dx = A2

1Z

0

x3e�2↵xdx

=
4↵3

(2↵)4
�(4) =

3

2↵
= 6a0

8.15.8 Using the commutator

Using the coordinate-momentum commutation relation prove that

X

n

(En � E0) |hEn| x̂ |E0i|
2 = constant
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which satisfies all boundary conditions if f(0) = 0 and limx!1 f(x�ax
e !

0. Substituting into the Schrodinger equation we get

✓
f 00(x)� 2↵f 0(x) +

me2

2h2x
f(x)

◆
e�↵x = 0 ! f 00(x)�2↵f 0(x)+

me2

2h2x
f(x) = 0

The solution to this equation is unique so that we only need to guess an ex-
pression for f(x) that satisfies the equation and the boundary conditions.
We find

f(x) = x with ↵ =
me2

4h2
=

1

4a0

The full solution is then
 (x) = Axe�↵x

where A is the normalization constant.

This is the solution for the ground sate since it has zeroes only at the
boundaries (x = 0 and x ! 1). We find A by

1 = A2

1Z

0

| (x)|2dx = A2

1Z

0

x2e�2↵xdx =
A2

8↵3

1Z

0

y2e�ydy =
A2

8↵3
�(3) =

A2

4↵3
! A = 2↵3/2

(d) Find the ground state energy.

E0 = �
~2↵2

2m
= �

me4

32~2 = �
e2

8a0
=

1

4
Eground�state

hydrogen

(e) Find the expectation value hx̂i in the ground state.

We then have

h | x̂ | i =

1Z

0

1Z

0

h | x0
i hx0

| x̂ |xi hx |  i dxdx0 =

1Z

0

1Z

0

h | x0
ix�(x� x0) hx |  i dxdx0

=

1Z

0

h | xix hx |  i dx =

1Z

0

x | (x)|2 dx = A2

1Z

0

x3e�2↵xdx

=
4↵3

(2↵)4
�(4) =

3

2↵
= 6a0

8.15.8 Using the commutator

Using the coordinate-momentum commutation relation prove that

X

n

(En � E0) |hEn| x̂ |E0i|
2 = constant
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since E < 0 for a bound state. (i) What is the solution of the Schrödinger equation at large x?

(ii) What is the boundary condition at x = 0? (iii) Use the results of (i) and (ii) to guess the

ground state solution of the equation. Remember the ground state wave function has no zeros

except at the boundaries. (iv) Find the ground state energy. (v) Find the expectation value hx̂i in
the ground state.



since E < 0 for a bound state. (i) What is the solution of the Schrödinger equation at large x?

(ii) What is the boundary condition at x = 0? (iii) Use the results of (i) and (ii) to guess the

ground state solution of the equation. Remember the ground state wave function has no zeros

except at the boundaries. (iv) Find the ground state energy. (v) Find the expectation value hx̂i in
the ground state.

which satisfies all boundary conditions if f(0) = 0 and limx!1 f(x�ax
e !

0. Substituting into the Schrodinger equation we get

✓
f 00(x)� 2↵f 0(x) +

me2

2h2x
f(x)

◆
e�↵x = 0 ! f 00(x)�2↵f 0(x)+

me2

2h2x
f(x) = 0

The solution to this equation is unique so that we only need to guess an ex-
pression for f(x) that satisfies the equation and the boundary conditions.
We find

f(x) = x with ↵ =
me2

4h2
=

1

4a0

The full solution is then
 (x) = Axe�↵x

where A is the normalization constant.

This is the solution for the ground sate since it has zeroes only at the
boundaries (x = 0 and x ! 1). We find A by

1 = A2

1Z

0

| (x)|2dx = A2

1Z

0

x2e�2↵xdx =
A2

8↵3

1Z

0

y2e�ydy =
A2

8↵3
�(3) =

A2

4↵3
! A = 2↵3/2

(d) Find the ground state energy.

E0 = �
~2↵2

2m
= �

me4

32~2 = �
e2

8a0
=

1

4
Eground�state

hydrogen

(e) Find the expectation value hx̂i in the ground state.

We then have

h | x̂ | i =

1Z

0

1Z

0

h | x0
i hx0

| x̂ |xi hx |  i dxdx0 =

1Z

0

1Z

0

h | x0
ix�(x� x0) hx |  i dxdx0

=

1Z

0

h | xix hx |  i dx =

1Z

0

x | (x)|2 dx = A2

1Z

0

x3e�2↵xdx

=
4↵3

(2↵)4
�(4) =

3

2↵
= 6a0

8.15.8 Using the commutator

Using the coordinate-momentum commutation relation prove that

X

n

(En � E0) |hEn| x̂ |E0i|
2 = constant
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