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Problems set # 7 Physics 400 March 28, 2019

1. In classical mechanics, it is straightforward to define the concept of a particle flux. If there

are N particles per unit length and each one has speed u in the positive x direction, then all

particles in a length u∆t will pass a fixed point in time interval ∆t. The number passing a fixed

point per unit time is the particle flux F = Nu∆t/∆t = Nu. In quantum mechanics, the definition

of particle flux is equally simple, provided we are dealing with wavefunctions of particles with

definite momentum (i.e. momentum eigenfunctions). Consider a stream of particles represented

by the wave function ψ(x) = Aeikx. The function p(x) = |ψ(x)|2 represents the probability density

when ψ is the wavefunction for a single particle. However, when ψ represents a set of particles,

the function p(x) = |ψ(x)|2 gives the average particle density at the position x. p(x) is then the

particle density function. Then, the average number of particles per unti length is the constant

|A|2, and their speed u is obtained from the momentum magnitude: p = }k and u = p/m, so that

u = }k/m. Since k > 0, so is u. The flux is found to be

F = |A|2}k
m
. (1)

A word of warning is necessary here! The flux relation (1) can only be used when the wavefunction

is a momentum eigenfunction; the momentum is then the same for all the particles, and the average

number of particles per unit length is a constant, independent of position. Electrons accelerated by

a constant potential difference of 5 V are moving in the positive x-direction. There are on average

107 elecrtons per mm. (i) What is the wave function of the stream of electrons? (ii) What is the

flux of electrons? (ii) What is the corresponding current in amperes? [Hint: The current is the

total charge in coulombs passing a point per second; throughout neglect relativistic effects.]

2. A particle of mass m is confined to a one-dimensional region 0 ≤ x ≤ a (an infinite square

well potential). At t = 0 its normalized wave function is

Ψ(x, t = 0) =

√
8

5a

[
1 + cos

(πx
a

)]
sin
(πx
a

)
.

For an infinite square well we have

ψn(x) =

√
2

a
sin

nπx

a
, En =

n2π2}2

2ma2
, n = 1, 2, 3, · · · .

Any arbitrary wave function can be expanded in this basis, that is

Ψ(x, t) =
∑

n

Ane
−iEnt/}ψn(x) .

Then Ψ(x, t = 0) can be rewritten as

Ψ(x, t = 0) =

√
8

5a

[
1 + cos

(πx
a

)]
sin
(πx
a

)



=

√
8

5a
sin
(πx
a

)
+

√
2

5a
sin
(πx
a

)

=

√
4

5
ψ1(x) +

√
1

5
ψ2(x)

which is a sum of eigenfunctions. (i) What is the wave function at a later time t = t0? (ii) What

is the average energy of the system at t = 0 and t = t0? What is the probability that the particle

is found in the left half of the box (i.e., in the region 0 ≤ x ≤ a/2) at t = t0?

3. Consider the bound state problem E < V0 in the asymmetric infinite well potential

V (x) =





∞ x ≤ 0

0 0 < x < L

V0 L < x < 2L

∞ x > 2L

. (2)

(i) Solve the time-dependent Schrödinger equations in regions I (0 < x < L) and II (L < x < 2L)

and impose appropiate boundary conditions. (ii) Use the results in (i) to derive an equation in

terms of E, V0, L whose solution will determine the possible energy eigenvalues E. (iii) Duplicate

the procedure to determine an equation in terms of E, V0, L whose solution will resolve the possible

energy eigenvalues for E > V0.

4. Consider the square well of width a which is infinite on the left side and finite on the right,

V (x) =





∞ x < 0

0 0 < x < L

V0 x > L

. (3)

(i) Apply appropriate boundary conditions and derive the transcendental equation that determines

the energy eigenvalues for the bound states. (ii) Show that if the parameter 2mL2V0/}2 is smaller

than a critical value, there are no bound states. What is this critical value?

5. Consider a “downstep” potential, which drops at x = 0 as one goes from left to right.

V (x) =

{
0 x < 0

−V0 x > 0
. (4)

A particle of mass m and kinetic energy E > 0 approaches the abrupt potential drop. (i) Derive

the reflection and transmission coefficients in terms of E and V0. (ii) When a free neutron enters a

nucleus, it experiences a sudden drop in potental energy, from V = 0 outside to around −12 MeV

inside. Suppose a neutron, emitted with kinetic energy 4 MeV by a fission event, strikes such a

nucleus. What is the probability it will be absorbed, thereby initiating another fission? [Hint: The

transmission coefficient expresses the probability of transmission through the surface.]



SOLUTIONS

1. In an electron gun, electrons are boiled off the surface of a hot metal plate. They leave the

plate with very small speeds, and then the electric field accelerates them towards the anode. You

can calculate the speed of the electrons by thinking of the energy changes in the system. Each elec-

tron has a charge of e coulombs, and the potential difference between the filament and the anode

is V volts. The electrical energy transferred to each coulomb of charge is V joules. So the energy

transferred to electrons is eV joules. The electrons gain kinetic energy. Unlike electrons in a wire,

these electrons have nothing to hit, nothing to lose energy to, as they travel towards the anode.

So each electron gains kinetic energy equal to the amount of energy transferred from the electrical

supply. The electron starts from rest (near enough) so the kinetic energy gained is given by mu2/2

where m is its mass and u is its speed. So we can say that mu2/2 = eV . The mass of the electron is

m = 9× 10−31 kg and the electron charge is e = 1.6× 10−19 C. For an electron gun with a voltage

between its cathode and anode of V = 5 V the electrons will have a speed of about u = 1.3×106 m/s.

(Relativistic effects have not been taken into account.) There will be no more acceleration once

the electrons have passed through the anode. (i) ψ(x) = 3× 103 mm−1/2 exp
[
i 1.8× 109 m−1 · x

]

(ii) Since there are 1010 electron per meter, the flux is F ∼ 1.3 × 1016 s−1. (iii) The current is

i = Nqu = 2× 10−3 A = 1 mA.

2. (i) At time t0 we have

Ψ(x, t0) =

√
4

5
e−iE1t0/}ψ1(x) +

√
1

5
e−iE2t0/}ψ2(x).

(ii) The average energy does not change so that

〈E〉 = 〈ψ|Ĥ|ψ〉 =
∑

n

En|An|2 = E1|A1|2 + E2|A2|2 =
4

5
E1 +

1

5
E2 =

4π2}2

5ma2
.

(iii) The probability that the particle is in the region 0 ≤ x ≤ a/2 at t = t0 is

P (0 ≤ x ≤ x/2; t0) =

∫ a/2

0
|Ψ(x, t0)|2 dx ,

where

|Ψ(x, t0)|2 =

∣∣∣∣∣e
−iE1t0/}

{√
8

5a
sin
(πx
a

) [
1 + cos

(πx
a

)
e−i(E2−E1)t0/}

]}∣∣∣∣∣

2

=
8

5a
sin2

(πx
a

)[
1 + cos2

(πx
a

)
+ 2 cos

(πx
a

)
cos

(
3π2}2t0
2ma2

)]
,

so that

P (0 ≤ x ≤ a/2; t0) =
1

2
+

16

15π
cos

(
3π2}2t0
2ma2

)
.

3. For E < V0, the solutions for zones I and II are

ψI(x) = A sin(kx) +B cos(kx) and ψII(x) = Ce−κx +Deκx, (5)
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to solve for E given a particular a, b, and V0.

Although we know the parts of the energy eigenstate in each region, we must

ensure that they match at x = 0, and therefore find

ψ(x) =

⎧
⎪⎨
⎪⎩

A sin[(k(x + a)] for −a ≤ x ≤ 0

−A sin(ka)
sinh(κb)

sinh[κ(x − b)] for 0 ≤ x ≤ +b
(3.13)

for ψI(x) and ψII(x), apart from normalization.

Figure 3.1: The first four energy eigenstates for the asymmetric infinite square well
with E < V0. In all of the images h̄ = 2m = 1, V0 = 33, and a = b = 3.

As an example of a typical set of position-space energy eigenstates, in Figure

3.1 we have chosen V0 = 33 and h̄ = 2m = 1 to visualize these states (properly

normalized). For the first four states, corresponding to E < V0, the energy eigenstate

is mostly confined to the left half of the well.

Since we know the position-space energy eigenstate, ψ(x), we can Fourier trans-
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Figure 3.3: The first four energy eigenstates for the asymmetric infinite square well
with E > V0. In all of the images h̄ = 2m = 1, V0 = 33, and a = b = 3.

at an antinode, contrary to what we generally expect for an energy eigenstate in a

region with a varying potential energy function. Also, as noted in [11], this surprising

result is due solely to the abrupt discontinuity in the potential energy function. If

the potential step is smoothed even slightly, the results in general agree much better

with the classical expectations.

Since we know the position-space energy eigenstate as defined in Eqn. (3.19), we

can Fourier transform it to find the momentum-space energy eigenstate,

φ(p) =
1

2π

(
−keiap + k cos(ak) + ip sin(ak)

−k2 + p2

+
csc(bq) sin(ak)[qe−ibp − q cos(bq) + ip sin(bq)]

−p2 + q2

)
, (3.20)

apart from overall normalization.

The same states shown in Figure 3.3 in position space are shown in Figure 3.4 in

Figure 1: The first four energy eigenstates for the asymmetric infinite square well with E < V0
(left) and E > V0 (right). In all of the images we have taken } = 2m = 1, V0 = 33, and L = 3.

where k =
√

2mE/} and κ =
√

2m(V0 − E)/}. Imposing the boundary conditions we have

ψI(x = 0) = 0⇒ B = 0, (6)

ψII(x = 2L) = 0⇒ Ce−2κL +De2κL = 0⇒ D = −Ce−4κL . (7)

Imposing continuity of the wave function at x = L we obtain

ψI(x = L) = ψII(x = L)⇒ A sin kL = Ce−κL +DeκL (8)

and

ψ′I(x = L) = ψ′II(x = L)⇒ Ak cos kL = κ
(
−Ce−κL +DeκL

)
. (9)

Substituting the expression for D in (8) and (9) we have

A sin(kL) = C(e−κL − e−3κL) and Ak cos kL = −Cκ(e−κL + e−3κL) . (10)

Taking the ratio of these two expressions we get

κ tan(kL) = −k1− e−2κL
1 + e−2κL

, orequivalently κ tan(kL) = −k tanh(2κL) . (11)

(iii) For E > V0, the solutions for zones I and II are

ψI(x) = A sin(k1x) and ψII(x) = B sin(k2x) . (12)

Imposing the continuity condition on ψ(x) and ψ′(x) at x = L we obtain

k2 tan(k1L) = −k1 tan(k22L) . (13)

In Fig. 1 we show the first four eigenstates for E < 0 and E > 0.

4. The wavefunction ψ(x) for a particle with energy E in a potential V (x) satisfies the Schrödinger

equation. Inside the well (0 ≤ x ≤ L), the particle is free. The wave function is ψI(x) = A sin(kx),

where k =
√

2mE/}. Outside the well (L < x < ∞), the potential has constant value V > E.



The wave function is ψII(x) = Be−κx, where κ =
√

2m(V0 − E)/}. ψ(x) and its derivative are

continuous at x = L, then A sin kL = Be−κL and Ak cos kL = −Bκe−κL, from which

k cot kL = −κ . (14)

Now, since cot2 θ + 1 = csc2 θ, (14) can be rewritten as k2(csc2 θ − 1) = −κ2, where θ = kL. After

some algebra the trascendental equation can be rewritten as

θ csc θ = ±a, (15)

where a =
√

2mV0L2/h. Note that (15) are equations for the allowed values of k. The equation

with the positive sign yields values of θ in the second quadrant. The equation with the negative

sign yields values of θ in the fourth quadrant. Since sin θ ≤ θ ∀θ, it follows from (15) that there are

no bound states if 2mV0L
2/}2 ≤ 1.

5. (i) In region I, where x < 0, Schrödinger equation is given by

∂2ψI
∂x2

+
2mE

}2
ψI = 0⇒ ψI = Aeik1x +Be−ik1x, (16)

while in region II, where x > 0, we have

∂2IIψ

∂x2
+

2m(E + V0)

}2
ψII = 0⇒ ψII = Ceik2x . (17)

Demanding continuity of ψ and ψ′ at x− 0 we obtain

ψI(x = 0) = ψII = 0⇒ A+B = C (18)

and

ψ′I(x = 0) = ψ′′II(x = 0)⇒ ik1(A−B) = ik2C (19)

Substituting (18) into (19) we get

ik1(A−B) = ik2(A+B) or equivalently A(k1 − k2) = B(k1 + k2) . (20)

This leads to B/A = (k1 − k2)/(k1 + k2). The reflection coeficcient is then

R =

∣∣∣∣
B

A

∣∣∣∣
2

=

(
k1 − k2
k1 + k2

)2

=

(√
E −√E + V0√
E +

√
E + V0

)2

, (21)

whereas the transmissivity is given by

T = 1−R =
4k1k2

(k1 + k2)2
=

4
√
E(E + V0)

(
√
E + V0 +

√
E)2

. (22)

(ii) Taking V0 = 12 MeV and E = 4 MeV we obtain T = 8/9.


