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1. As a consequence of the Heisenberg uncertainty principle the more closely an electron is

confined to a region of space the higher its kinetic energy will be. In an atom the electrons are

confined by the Coulomb potential of the nucleus. The competition between the confining nature of

the potential and the liberating tendency of the uncertainty principle gives rise to various quantum

mechanical effects. Some of these microscopic effects have repercussions in the way this universe

is structured. Estimate the size of the hydrogen atom in its ground state by minimizing the total

energy as a function of the orbital radius of the electron.

2. While estimating the size of the hydrogen atom in its ground state we have seen that when

we consider small radii, the electron is present very close to the nucleus. Pushing the electron any

closer to the nucleus results in increased energies. The electron may even gain enough energy to fly

away from the nucleus. This is when the atom will ionize and hence the useful rule, “it is impossible

to squish atoms.” When atoms are subjected to a high enough pressure they become ionized. This

will happen, for example, at the center of a sufficiently massive gravitating body. (i) In order to

ionize an atom a certain minimum energy must be supplied to it. Estimate the reduction in atomic

radius required to ionize a hydrogen atom. (ii) What pressure P is needed to bring this about?

[Hint: P = −dE/dV , where E is energy and V is the volume.] (iii) A planet is defined as a body

in which the atoms resist the compressive force of gravity. Estimate the maximum mass and size

of a planet composed of hydrogen. (You will need to estimate the pressure required at the center

of the planet to support a column of mass against its weight.) This turns out to be of the order

of the mass of Jupiter. Thus, Jupiter is not only the largest planet composed of hydrogen in the

solar system but anywhere in the universe!

3. According to general principles of classical electrodynamics, accelerated charged particles

always radiate electromagnetic waves. This is the basic rule upon which all radiation sources are

based. At the end of the last century Larmor calculated the total power radiated by an accelerated

non-relativistic electron (v � c). His well known result is (in Gaussian units)

P =
2

3

q2a2

c3
, (1)

where a is the acceleration and q is the charge. In the Rutherford model of the hydrogen atom’s

ground state, the electron moves in a circular orbit of radius a0 = 0.529 Å around the proton,

which is assumed to be rigidly fixed in space. Since the electron is accelerating, a classical analysis

suggests that it will continuously radiate energy, and therefore the radius of the orbit would shrink

with time. Assuming that the electron is always in a nearly circular orbit and that the rate of

radiation of energy is sufficiently well approximated by classical, nonrelativistic electrodynamics,

how long is the fall time of the electron, i.e., the time for the electron to spiral into the origin?

4. The neutrons produced in a reactor are known as thermal neutrons, because their kinetic

energies have been reduced (by collisions) until K = 3
2kT , where T is room temperature (about



293 K). (i) What is the kinetic energy of such neutrons? (ii) What is their de Broglie wavelength?

5. Position x and momentum px are conjugate variables. Consider a harmonic oscillator, oscil-

lating in the x direction. The potential energy of this oscillator V (x) is quadratic in x. Using the

Sommerfeld-Wilson quantization rule, find the energy levels of any oscillator defined by a potential

energy function V (x).



SOLUTIONS

1. Consider a single hydrogen atom: an electron of charge −e free to move around in the

electric field of a fixed proton of charge +e. (The proton is ∼ 2000 times heavier than electron,

so we consider it fixed.) The electron has a potential energy due to the attraction to the proton

of V (r) = − e2

4πε0r
, where r is the electron proton separation. The electron has a kinetic energy of

K = p2

2m . The total energy is then

E(r) =
p2

2m
− e2

4πε0r
.

Classically, the minimum energy of the hydrogen atom is −∞ the state in which the electron is on

top of the proton p = 0, r = 0. Quantum mechanically, the uncertainty principle forces the electron

to have non-zero momentum and non-zero expectation value of position. If a is an average electron-

proton distance, the uncertainty principle informs us that the minimum electron momentum is on

the order of }/a. The enrgy as a function of a is then

E(a) =
}2

2ma2
− e2

4πε0a
.

If we insist on placing the electron right on top of the proton (a = 0), the potential energy is still

−∞, just as it is classically, but the total energy is:

E(0) ≈ lim
a→0

[
}2

2ma2
− e2

4πε0a

]
= lim

a→0

[
2πε0}2 −me2a

4πε0ma2

]
→ +∞ .

Hence, quantum mechanics tells us that an atom could never collapse as it would take an infi-

nite energy to locate the electron on top of the proton. The minimum energy state, quantum

mechanically, can be estimated by calculating the value of a = a0 for which E(a) is minimized:

∂E(a)

∂a

∣∣∣∣
a0

= − }2

ma3
+

e2

4πε0a20
= 0,

and so

a0 =
4πε0}2

me2
=

10−10 · 10−68

10−30 · 2 · 10−38
m ≈ 0.5Å .

By preventing localization of the electron near the proton, the uncertainty principle retards the

classical collapse of the atom. The state of minimum energy corresponds to E(a0) = −13.6 eV; see

Fig. 1.

2. (i) The momentum of an electron confined within a radius r is approximately p ∼ }/r. The

total energy is,

E =
}2

2mr2
− e2

4πε0r
.
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by calculating the value of a=ao for which E(a) is minimized:

a [Å]

E [eV]
AS A FUNCTION OF a

THE TOTAL ENERY 
LOOKS LIKE THIS 

0.5

-13.6

By preventing localization of the electron near the proton, the Uncertainty Principle
RETARDS THE CLASSICAL COLLAPSE OF THE ATOM,

PROVIDES THE CORRECT DENSITY OF MATTER,
and YIELDS THE PROPER BINDING ENERGY OF ATOMS

18

Figure 1: As a function of a the total energy looks like this.

Ionization occurs when the energy of the electron approached zero, the energy of the vacuum state.

We calculate the radius rion when E = 0; namely

}2

2mr2
− e2

4πε0r
⇒ rion =

2πε0}2

me2
' 0.24Å .

The radius rion is smaller than the a0, as we expect. Excessive pressure inside a planet can push

the electron to this radius. At this point, the atoms will ionize and the planet will not be stable.

(ii) The pressure is given by

P = −dE
dV

= −dE
dr

dr

dV
.

We have V = 4
3πr

2, dV = 4πr2dr and dr/dV = (4πr2)−1. Differentiating the energy expression

dE

dr
=

}2

2m

(
−2

r3

)
− 1

4πε0
e2
(
−1

r2

)
= − }2

mr3
+

e2

4πε0r2
.

We now substitute the value of the radius, r = rion,

dE

dr

∣∣∣∣
rion

= −3.9× 107 J/m,

resulting in the ionizing pressure

Pion = −dE
dr

1

4πr2ion
= 5.2× 1013 Pa .



(iii) We assume a spherical planet of radius R and mass M . We determine the parameters that

result in ionizing pressures at the centre of the planet. First of all, we assume a constant density

ρ of the planet throughout the interior. An estimate of the density is the proton mass divided by

the volume of the atom,

ρ =
3mp

4πr3ion
' 2.8× 104 kg/m3 .

The pressure exerted by a fluid of length R at its base is given by ρgR. However, the value of

g on this planet is unknown, but from Newton’s law of gravitation, we know that g = GM/R2.

Therefore,

Pion = ρgR =
ρGM

R
⇒ R =

ρGM

Pion
' 3.5× 10−20M m .

Now the density ρ can also be equated to the mass of the planet divided by its volume,

ρ = 2.8× 104 kg/m3 =
3M

4πR3
⇒M =

4

3
πρR3.

Substituting results in M = 4 × 1026 kg and R = 1.6 × 107 m. The measured mass and radius of

Jupiter are 1.9× 1027 kg and 7× 107 m.

3. The dominant energy loss is from electric dipole radiation, which obeys the Larmor formula.

For an electron of charge −e and mass me in an orbit of radius r about a fixed nucleus of charge

+e, the radial component of the nonrelativistic force law, ~F = me~a, tells us that e2/r2 = mear ≈
me v

2
θ/r, in the adiabatic approximation that the orbit remains nearly circular at all times. In the

same approximation, aθ � ar, i.e., a ≈ ar, and hence,

dE

dt
= − 2e6

3r4m2
ec

3
= −2

3

r30
r4
mec

3 , (2)

where r0 = e2/(mec
2) = 2.8 × 10−15 m is the classical electron radius. The total nonrelativistic

energy (kinetic plus potential) is

E = −e
2

r
+

1

2
mev

2 = − e
2

2r
= −r0

r
mec

2 . (3)

Equating the time derivative of (3) to (2), we have

dE

dt
=

r0
2r2

ṙmec
2 = −2

3

r30
r4
mec

3, or equivalently r2ṙ =
1

3

dr3

dt
= −4

3
r20c, yielding r3 = a30−4r20ct .

(4)

The time to fall to the origin is then

tfall =
a30

4r20c
= 1.6× 10−11 s . (5)

This is of the order of magnitude of the lifetime of an excited hydrogen atom, whose ground state,

however, appears to have infinite lifetime.

4. (i) The average kinetic energy of the neutrons is K = 3kT/2 = 0.0379 eV. (ii) The neutrons

are non-relativistic so the momentum is given by p =
√

2mK =
√

2mc2K/c = 8.44 × 103 eV/c,



yielding λ = hc/(pc) = 0.147 nm.

5. Let’s say the oscillator has energy E and amplitude xmax. Then

E =
p2

2m
+

1

2
kx =

1

2
kx2max .

The oscillator has frequency ω =
√
k/m, so k = mω2. Therefore,

p =

√
1

2
mω2(x2max − x2)2m = mω

√
x2max − x2 .

We want to integrate
∮
p ·dx along one oscillation. We do this by integrating this on a quarter-cycle

(x = 0 to x = xmax) and multiplying by 4 (details somewhat omitted):

nh = mω

∮
one period

√
x2max − x2 dx = 4mω

∫ xmax

0

√
x2max − x2 dx = mωπx2max .

Putting this together gives us

nh = πmωx2max =
2π

ω

(
1

2
mω2x2max

)
.

But, 1
2mω

2x2max is the energy E, so

2π

ω
E = nh⇒ E =

nhω

2π
= nhν .

This tells us that the energy levels of this oscillator are quantized, and equally spaced.


