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Problems set # 11 Physics 400 May 2, 2019

1. Show that ∆E∆t ≥ }/2, where ∆t is the shortest time, during which the average value of a

certain quantity is changed by an amount equal to the standard deviation of this quantity.

2. Calculate the eigenfunctions and energy levels for a free particle, enclosed in a box with

edges of lengths a, b, and c. [Hint: The presence of the box (because of continuity) requires the

wave function to vanish at the edges.]

3. Consider the squared length of the angular momentum vector L̂2 = L̂2
x+ L̂2

y +L2
z. Show that

[L̂2, L̂i] = 0, for i = x, y, z.

4. Show that the allowed values for l and mz are integers such that l = 0, 1, 2, · · · and mz =

l, · · · , l − 1, l. [Hint: This result can be inferred from the commutation relationship.]



SOLUTIONS

1. For nonrelativistic quantum mechanics, it is not so surprising that time and space are treated

differently, with position being an operator and not time. After all, this is also what happens in

Newtonian mechanics: time is absolute, and part of the background, and all other observables

are functions of time. This paradigm underlies the formulation of the fundamental problem of

Newtonian physics: to determine how a system evolves in time. Time cannot be an observable

because an observable is a function of what we consider the system’s “state”, but the state is

considered a function of time in the first place (so time is the independent variable). In deriving

the time-energy uncertainty principle one should be careful in defining the meaning of the standard

deviation ∆t. It is well known that the total energy of an isolated quantum mechanical system

in distinction to a classical one, does not, in general, have a definite constant value. Instead of

this the probability to obtain in a measurement any specified value of the energy of the system

remains constant in time. The energy can only be determined exactly in the special case of a

stationary state. But in this case, as easily seen, all dynamical variables or, more exactly, their

distribution functions, remain constant in time. In other words, the definiteness of the total energy

of the system entails the constancy with respect to the time of all dynamical variables. It can be

concluded that there must exist a general connection between the dispersion of the total energy of

the system and the time variation of coordinates, momenta, etcetera. The uncertainty relation with

which are concern gives a quantitative formulation of this connection. Let A and and B denote

any two quantities and at the same time the corresponding Hermitian operators. From

∆A∆B ≥ 1
2 |〈[Â, B̂]〉| (1)

(relation derived in Problems set #6) we have

∆A∆B ≥ 1

2
〈AB −BA〉 (2)

where ∆A and ∆B are the standards of the quatities A and B and 〈·〉 denotes as usual the quantum

mechanical average. In addition, it is easily seen that

}
2

∂〈B〉
∂t

= i(〈HB −BH〉) (3)

where H is the Hamiltonian of the system not depending explicitely on time. Putting in (2) A ≡ H
we obtain, with the help of (3) the desired uncertainty relation for energy, in the form of the

follwoing inequality:

∆H ∆B ≥ }
2

∣∣∣∣∂〈B〉∂t

∣∣∣∣ . (4)

This relation gives, thus, the connection between the standard ∆H of the total energy of an isolated

system, the standard ∆B of some other dynamical quantity and the rate of change of the average

value of this quantity. The relation (4) can be put in a different form. The absolute value of an

integral cannot exceed the integral of the absolute value of the integral. Thus, integrating (4) from

t to t+ δt and taking into account that ∆H is constant one gets

∆H δt ≥ ~
2

|〈Bt+δt〉 − 〈Bt〉|
∆B

, (5)



where the denominator of the right-hand side denotes the average value of the standard ∆B during

the time δt. Sometimes (especially in the case of a continuous spectrum of eigenvalues) it is

convenient to refer the variations of the average value of a dynamical quantity to its standard. In

such a case it is convenient to introduce a special notation ∆t for the shortest time, during which

the average value of a certain quantity is changed by an amount equal to the standard of this

quantity. ∆t can be called the standard time. With the help of this notation we can rewrite (5) in

the form of an uncertaity relation

∆H ∆t ≡ ∆E∆t ≥ ~/2 . (6)

2. The time-independent Schrödinger equation of a particle of mass m, which is constrained to

remain within a finite region of space (“a box”) is given by

− }2

2m
∇2ψ = Eψ. (7)

Let k2 = 2mE/}2, and note that it is real. This equation can be solved with the help of the

separation of variables technique. Start out by trying a solution of the following form ψ(x, y, z) =

X(x)Y (y), Z(z). Substitution of this solution into the time-independent Schrödinger equation

yields: Y ZX ′′+XZY ′′+XY Z ′′ = −k2XY Z. Then divide both sides of the equation by ψ, obtain

X ′′/X + Y ′′/Y + Z ′′/Z = −k2, and note that each of the three terms on the right-hand side is

independent of the others, because x, y, z are independent variables. In order for their sum to

be equal to a constant, −k2, each of those terms must be independently equal to a constant, such

that the sum of all three constants is equal to −k2. Denote those three constants by −k2x, −k2y,
−k2z , respectively, such that Schrödinger equation now translates into three ordinary differential

equations: X ′′ = −k2xX, Y ′′ = −k2yY , Z ′′ = −k2zZ. The solutions to these equations are: X(x) =

A sin(kxx) + B cos(kxx), Y (y) = C sin(Kyy) + D cos(kyy), Z(z) = F sin(kzx) + G cos(kzx), where

A, B, C, D, F , and G are (complex) undetermined parameters. Since the infinitely high walls do

not allow the particle to leave the box, the wave function is zero at all times for (x, y, z) < (0, 0, 0)

and (x, y, z) > (a, b, c), and hence ψ(0, 0, 0) = ψ(a, b, c) = 0, because the wave function needs to

be continuous. Imposing ψ(0, 0, 0) = 0 implies B = D = G = 0, whereas applying the second

boundary condition ψ(a, b, c) = 0 yields kxa = nπ, kyb = mπ, and kzc = lπ, with n,m, l ∈ Z. The

particle is equally likely to be found everywhere,
∫ a
0

∫ b
0

∫ c
0 |ψ(x, y, z)|2dxdydz = 1, and so N = ACF

can be determined from the requirement that the wave function is normalized, i.e.

|N |2
∫ a

o

∫ b

0

∫ c

0
sin2(nπx/a) sin2(mπy/b) sin2(lπz/c) dx dy dz =

1

8
|N |2abc⇒ |N | =

√
8

abc
. (8)

All in all, the stationary states of a particle in a 3-dimensional box are given by

ψnlm(x, y, z) =

√
8

abc
sin(nπx/a) sin(mπy/b) sin(lπz/c), (9)

and the corresponding energy levels are

En,m,l =
}2π2

2m
(
n2

a2
+
m2

b2
+
l2

c2
). (10)



3. Consider the commutator [L̂2, L̂z]:

[L̂2, L̂z] = [L̂2
x + L̂2

y + L̂2
z, L̂z] from the definition of L̂2

= [L̂2
x, L̂z] + [L̂2

y, L̂z] + [L̂2
z, L̂z]

= [L̂2
x, L̂z] + [L̂2

y, L̂z] since L̂z commutes with itself

= L̂xL̂xL̂z − L̂zL̂xL̂x + L̂yL̂yL̂z − L̂zL̂yL̂y . (11)

We can use the commutation relation [L̂z, L̂x] = i}L̂y to rewrite the first term on the right-hand

side as L̂xL̂xL̂z = L̂xL̂zL̂x − i}L̂xL̂y, and the second term as L̂zL̂xL̂x = L̂xL̂zL̂x + i}L̂yL̂z. In a

similar way, we can use [L̂y, L̂z] = i}L̂x to rewrite the third term as L̂yL̂yL̂z = L̂yL̂zL̂y + i}L̂yL̂x,

and the fourth term L̂zL̂yL̂y = L̂yL̂zL̂y − i}L̂xL̂y. Thus, on substituting in we find that

[L̂2, L̂z] = −i}L̂xL̂y − i}L̂yL̂x + i}L̂yL̂x + i}L̂xL̂y = 0 . (12)

By performing a cyclic permutation of the indexes, we can show that this holds in general, i.e.

[L̂2, L̂i] = 0, for i = x, y, z.

4. Assume that the eigenvalues of L̂2 and L̂z are unknown and denote them λ and µ. We

introduce two new operators, the raising and lowering operators L̂+ = L̂x+ iL̂y and L̂− = L̂x− iL̂y.
The commutator with Lz is [L̂z, L̂±] = ±}L̂± (while they of course commute with L2). Now consider

the function f± = L̂±f , where f is an eigenfunction of L̂2 and L̂z:

L̂2f± = L̂±L̂
2f = L̂±λf = λf± and L̂zf± = [L̂z, L̂±]f + L̂±L̂zf = ±}L̂±f + L̂±µf = (µ±})f± .

(13)

Then f± = L̂±f is also an eigenfunction of L̂2 and L̂z. Moreover, we can keep finding eigenfunctions

of L̂z with higher and higher eigenvalues µ′ = µ + } + } + · · ·, by applying the L̂+ operator (or

lower and lower with L̂−), while the L̂2 eigenvalue is fixed. Of course there is a limit, since we want

µ′ ≤ λ. Then there is a maximum eigenfunction such that L̂+fM = 0 and we set the corresponding

eigenvalue to }lM . Now note that we can write L̂2 instead of using L̂x,y by using L̂±:

L̂2 = L̂−L̂+ + L̂2
z + }L̂z . (14)

Using this relationship on fM we find:

L̂2fM = λfM ⇒ (L̂−L̂+ + L̂2
z + }L̂z)fM = [0 + }2l2M + }(}lM )]fM ⇒ λ = }2lM (lM + 1) . (15)

In the same way, there is also a minimum eigenvalue lm and eigenfunction such that L̂−fm = 0 and

we can find λ = }2lm(lm − 1). Since λ is always the same, we also have lm(lm − 1) = lM (lM + 1),

with solution lm = −lM (the other solution would have lm > lM ). Finally, we have found that

the eigenvalues of Lz are between +}l and −}l with integer increases, so that l = −l + N giving

l = N/2: that is, l is either an integer or a half-integer. We thus set λ = }2l(l + 1) and µ = }m,

with m = −l,−l + 1, · · · , l.


