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Problems set # 10 Physics 400 April 18, 2019

1. The number of stars in our galaxy is about N = 1011. Assume that the probability that

a star has planets is p = 10−2, the probability that the conditions on the planet are suitable for

life is q = 10−2, and the probability of life evolving, given suitable conditions, is r = 102. These

numbers are rather arbitrary. (i) What is the probability of life existing in an arbitrary solar system

(a star and planets, if any)? (ii) What is the probability that life exists in at least one solar system?

2. (i) Show that the following relation applies for any operator O that lacks an explicit depen-

dence on time:
∂

∂t
〈O〉 = i

}
〈[H,O]〉

(ii) Use this result to derive Ehrenfest’s relations, which show that classical mechanics still applies

to expectation values:

m
∂

∂t
〈~x〉 = 〈~p〉 and

∂

∂t
〈~p〉 = −〈~∇V 〉

[Hint: Remember that the Hamiltonian, H, is a Hermitian operator, and that H appears in the

time-dependent Schrödinger equation.]

3. Suppose that the wave function of a (spinless) particle of mass m is

ψ(r, θ, φ) = A
e−αr − e−βr

r
,

where A, α and β are constants such that 0 < α < β. Find the potential V (r, θ, φ) and the energy

E of the particle.

4. Consider a particle of mass µ constrained to move on a circle of radius a. Show that

H =
L2

2µa2

Solve the eigenvalue/eigenvector problem of H and interpret the degeneracy.



5.6.4 Is there life?

The number of stars in our galaxy is about N = 1011. Assume that the proba-
bility that a star has planets is p = 10�2, the probability that the conditions on
the planet are suitable for life is q = 10�2, and the probability of life evolving,
given suitable conditions, is r = 10�2. These numbers are rather arbitrary.

(a) What is the probability of life existing in an arbitrary solar system (a star
and planets, if any)?

The probability of life in the vicinity of some arbitrarily selected star is
equal to pqr = 10�6, assuming that the three conditions are independent.

(b) What is the probability that life exists in at least one solar system?

The probability P that life exists in the vicinity of at least one star is
given by P = 1 � P0, where P0 is the probability that no stars have life
about them.

The probability of no life about some arbitrarily selected star is 1 � pqr.
Therefore, we have

P0 = (1� pqr)N

Now
logP0 = N log(1� pqr) ⇡ N(�pqr) = �105

so that
P0 = e�pqrN

⇡ e�105
⇡ 0

Thus,
P = 1� P0 ⇡ 1

This says that even a very rare event is almost certain to occur in a large
enough sample.

NOTE: A naive argument against a purely natural origin of life is sometimes
based on the smallness of the probability (a), whereas it is the probability (b)
that is relevant!

5.6.5 Law of large Numbers

This problem illustrates the law of large numbers.

(a) Assuming the probability of obtaining heads in a coin toss is 0.5, compare
the probability of obtaining heads in 5 out of 10 tosses with the probability
of obtaining heads in 50 out of 100 tosses and with the probability of
obtaining heads in 5000 out of 10000 tosses. What is happening?

(b) For a set of 10 tosses, a set of 100 tosses and a set of 10000tosses, calculate
the probability that the fraction of heads will be between 0.445 and 0.555.
What is happening?
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1.(i)
SOLUTIONS

1. Perhaps the most direct solution is to begin with the continuity equation (1), substitute in

the definitions of ⇢ and j, and then prove the equality. First, calculate the partial derivatives:
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and
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 +  ⇤@ 

@t
. (7)

The connection between the time and space derivatives is given by rearranging the Schrödinger

equation and its complex conjugate
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2m

@2 ⇤

@x2
+

i

}V  
⇤ . (8)

Substituting (8) into (7)
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The continuity equation is equivalent to conservation of probability. One way to see this is to

integrate the continuity equation over x, with the added restriction that  and @ /@x go to zero

as x ! ±1,

0 =

Z +1

�1
dx
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(10)

The last integral is the total probability (otherwise known as the normalization), and is shown to

be constant with respect to time.

2. (ii) [Â, B̂]/2 + {Â, B̂}/2 = (ÂB̂ � B̂Â)/2 + (ÂB̂ + B̂Â)/2 = ÂB̂. (iii) {Â, B̂}† = (ÂB̂)† +

(B̂Â)† = B̂†Â† + Â†B̂† = {Â, B̂}, so the anticommutator is hermitian. [Â, B̂]† = (ÂB̂)† � (B̂Â)† =

B̂†Â† � Â†B̂† = �(ÂB̂ � B̂Â) = �[Â, B̂], so the commutator is anti-Hermitian. (iv) An anti-

hermitian operator is equal to the negative of its hermitian conjugate, that is Â† = �Â. In inner

products this means h�|Â i = hÂ†�| i = �hÂ�| i. The expectation value of an anti-hermitian

operator is: h |Â i = hÂ† | i = �hÂ | i = �hAi⇤. But h |Â i = hAi, so hAi = �hAi⇤, which
means the expectation value must be pure imaginary.

3. Define new Hermitian operators Â0 = Â�hÂi and B̂0 = B̂�hB̂i. Then, using the Schwarz’s

inequality we obtain hÂ02ihB̂02i � |hÂ0B̂0i|2, or �A�B � |hÂ0B̂0i| = |h[Â0, B̂0]i/2 + h{Â0, B̂0}i/2 �
|h[Â0, B̂0]i|/2. Since the expectation value of the commutator is imaginary and the anticommu-

tator is real, each makes a positive contribution to the absolute value, and the anticommutator

can be dropped without changing the inequality in the last step. So, �A�B � |h[Â0, B̂0]i|/2 =

|h[Â, B̂]� [Â, hB̂i]� [hÂi, B̂]+[hÂi, hB̂i]i|/2 = |h[Â, B̂]i|/2. Note that hÂi and hB̂i are just numbers,

so they commute with the operators and the commutators involving them are 0.



We have
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which says that
@

@t
hOi =

i

~ h[H,O]i

Use this result to derive Ehrenfest’s relations, which show that classical me-
chanics still applies to expectation values:

m
@

@t
h~xi = h~pi ,

@

@t
h~pi = �hrV i

We have

d

dt
hxi =

i

~ h[H,x]i =
i

~ h
1

2m
[p2x, x]i

=
i

2m~ h(pxpxx� xpxpx)i =
i

2m~ h(pxpxx� pxxpx + pxxpx � xpxpx)i

=
i

2m~ h(px[px, x] + [px, x]px)i =
i

2m~ h(�2i~px)i

= h
px
m

i

Similarly for y and z components. Therefore we have

m
@

@t
h~xi = h~pi

Now we have

d

dt
hpxi =

i

~ h[H, px]i =
i

~ h[V (x), px]i

=
i

~ hi~
@V (x)

@x
i = �h

@V (x)

@x
i

Similarly for y and z components. Therefore we have

@

@t
h~pi = �hrV i
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We find the minimum by computing

@x

@�x
= 0 = 1�

0.45~
(�x)2

! �x =
p

0.45~

Therefore, the minimum x consistent with quantum mechanics is

xmin = 2
p

0.45~ ⇡ 10�17m

This is a very small distance! An atomic nucleus has a diameter of 10�15 m.

3.11.7 Find the Potential and the Energy

Suppose that the wave function of a (spinless) particle of mass m is

 (r, ✓,�) = A
e�↵r

� e��r

r

where A, ↵ and � are constants such that 0 < ↵ < �. Find the potential
V (r, ✓,�) and the energy E of the particle.

Write the wave function as

 (r, ✓,�) = A
e�↵r

� e��r

r
=

u(r)

r

Since  depends only on r, we have ` = m = 0, and the Schrodinger equation
in spherical coordinates is

�
~2
2m

d2u

dr2
+ (V (r)� E)u = 0 ! V (r)� E =

~2
2m

1

u

d2u

dr2

Di↵erentiate u(r) = A(e�↵r
� e��r):

du

dr
= A(�↵e�↵r + �e��r) ,

d2u

dr2
= A(↵2e�↵r

� �2e��r)

This gives

V (r)� E =
~2
2m

↵2e�↵r
� �2e��r

e�↵r � e��r

Since the potential must vanish at r ! 1, we get

E = � lim
r!1

~2
2m

↵2e�↵r
� �2e��r

e�↵r � e��r
= �

~2↵2

2m

and the potential is

V (r) =
~2
2m

✓
↵2e�↵r

� �2e��r

e�↵r � e��r
� ↵2

◆

11
For small r:

V (r) ⇡ �
~2
2m

(↵2
� �2)e��r

(� � ↵)r
= �

~2(↵+ �)e��r

2mr

This is a screened Coulomb potential.

The same procedure to find V , E also works if  has an angular dependence, by
including the centrifugal barrier term `(`+1)~2/2mr2 in the radial Schrodinger
equation.

3.11.8 Harmonic Oscillator wave Function

In a harmonic oscillator a particle of mass m and frequency ! is subject to a
parabolic potential V (x) = m!2x2/2. One of the energy eigenstates is un(x) =

Axe(�x2/x2
0), as sketched below.

Figure 3.5: A Wave Function

(a) Is this the ground state, the first excited state, second excited state, or
third?

The plot shows one node which implies that it is the first excited state.
Alternatively, the Schrodinger equation

�
~2
2m

d2 

dx2
+ V (x) = E , V (x) =

1

2
m!2x2

gives

�
~2
2m

d

dx

✓
Ae(�x2/x2

0) �
2x2

x2
0

Ae(�x2/x2
0)

◆
+ V (x) = E 

�
~2
2m

✓
�

6

x2
0

+
4x2

x4
0

◆
 +

1

2
m!2x2 = E 

Taking limx!1 says that we must have

4~2x2

2mx4
0

=
1

2
m!2

! x2
0 =

2~
m!
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9.7.4 On a circle

Consider a particle of mass µ constrained to move on a circle of radius a. Show
that

H =
L2

2µa2

Solve the eigenvalue/eigenvector problem of H and interpret the degeneracy.

We have the potential V = 0 and the kinetic energy

T =
1

2
µv2 =

1

2
µa2�̇2 , v = a�̇

In addition,
Lz = µav = µa2�̇

so that

H = T + V =
L2
z

2µa2

Now we have

H | i =
L2
z

2µa2
| i = E | i

or
h�|H | i = h�| L2

z

2µa2 | i = h�|E | i

1
2µa2

⇣
~
i
@
@�

⌘2
h� |  i = E h� |  i

�
~2

2µa2
@2 (�)
@�2 = E (�)

so that we have the solution

 (�) = Aeim� , E =
~2m2

2µa2

Now, imposing single-valuedness, we have

 (�) = Aeim� =  (�+ 2⇡) = Aeim�ei2⇡m

ei2⇡m = 1 ! m = integer

Since m and �m give the same energy, each level is 2-fold degenerate, corre-
sponding to rotation CW and CCW.

9.7.5 Rigid rotator

A rigid rotator is immersed in a uniform magnetic field ~B = B0êz so that the
Hamiltonian is

Ĥ =
L̂2

2I
+ !0L̂z

where !0 is a constant. If

h✓,� |  (0)i =

r
3

4⇡
sin ✓ sin�
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