
Prof. Anchordoqui

Problems set # 1 Physics 400 January 31 and February 7, 2019

1. Let V be a vector space over F and let T be a linear transformation of the vector space V

to itself. A nonzero element x ∈ V satisfying T (x) = λx for some λ ∈ F is called an eigenvector

of T , with eigenvalue λ. Prove that for any fixed λ ∈ F the collection of eigenvectors of T with

eigenvalue λ together with 0 forms a subspace of V , that is, a subset of the vector space V that is

closed under addition and scalar multiplication.

2. (i) Show that {t, sin t, cos 2t, sin t cos t} is a linearly independent set of functions.

(ii) Find all unit vectors lying in span{(3, 4)}.

3. Consider the following matrices:

A =

 1 2 −1

0 3 1

2 0 1



B =

 2 1 0

0 −1 2

1 1 3



C =

 2 1

4 3

1 0


find the following:

(i) det(AB) = |AB|, (ii) AC, (iii) ABC, and (iv) AB− BTAT .

4. A matrix is orthogonal if its transpose is equal to its inverse: AT = A−1. Show that the

product of 2 orthogonal matrices is also an orthogonal matrix.

5. A matrix A ∈ Cn×n is nilpotent if Ak = 0 for some integer k > 0. Prove that the only

eigenvalue of a nilpotent matrix is zero.

6. (i) Determine whether the function T : R2 → R2, such that T (x, y) = (x2, y) is linear?

(ii) Let T : R3 → R3 be a linear transformation such that

T (1, 0, 0) = (2, 4,−1), T (0, 1, 0) = (1, 3,−2), T (0, 0, 1) = (0,−2, 2);

compute T (−2, 4,−1).

(iii) Let T : R3 → R3 be a linear transformation such that

T (x1, x2, x3) = (2x1 + x2, 2x2 − 3x1, x1 − x3), x = (x1, x2, x3) ∈ R3;



compute T (−4,−5, 1).

(iv) Let T : R5 → R2 be a linear transformation T (x) = Ax, with

A =

(
−1 2 1 3 4

0 0 2 −1 0

)
;

compute T (1, 0,−1, 3, 0).

(v) Let T (x, y, z) = (3x − 2y + z, 2x − 3y, y − 4z). Write down the matrix representation of T in

the standard basis and use it to find T (2,−1,−1).

(vi) Let T : R3 → R3 be given by T (a1, a2, a3) = (3a1 − 2a3, a2, 3a1 + 4a2). Prove that T is an

isomorphism and find T−1.

7. (i) Show that if T : R2 → R2 is the counterclockwise rotation by a fixed angle θ, then

T (x, y) = Ax =

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
.

(ii) Let T be the counterclockwise rotation in R2 by an angle 120◦, write down the matrix of T

and compute T (2, 2).

(iii) Prove that if θ is not an integer multiple of π there does not exist a real valued matrix B such

that B−1AB is a diagonal matrix.

8. Let x ∈ Rn be a vector. Then, for y ∈ Rn, define projx(y) = x .y
‖x‖2 x. The point of

such projections is that any vector y ∈ Rn can be written uniquely as a sum of a vector along

x and another one perpendicular to x: y = projx(y) + [y − projx[y)]. It is easy to check that

[y − projx[y)] ⊥ projx(y).

(i) Show that projx : Rn → Rn is a linear transformation.

(ii) Let T be the projection on to the vector x = (1,−5) ∈ R2 : T (y) = projx(y); find the matrix

representation in the standard basis and compute T (2, 3).

9. (i) Show that the eigenvalues of a symmetric linear operator A are real.

(ii) Prove that the eigenvectors of a symmetric linear operator A associated to different eigenvalues

are mutually orthogonal.

10. (i) Show that Hermitian matrices satisfy the following properties (AB)† = B†A†.
(ii) Prove that the inverse of a Hermitian matrix is again a Hermitian matrix.

11. Find the eigenvalues and normalized eigenvectors of the Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

12. Show that the Pauli matrices obey the following commutation and anticommutation rela-

tions: [σi, σj ] = 2i
∑3

k=1 εijkσk and {σi, σj} = 2δij12 .

13. Show that {1, σ1, σ2, σ3} is an appropriate basis to describe the space of operators on a two-

Hilbert space. (i) Show that {1, σ1, σ2, σ3} are linearly independent. (ii) Prove that {1, σ1, σ2, σ3}



form a basis in 2× 2 matrix space, by showing that any arbitrary matrix

M =

(
m11 m12

m21 m22

)

can be written on the form M = a01+~a . ~σ, where a0 = 1
2Tr (M), ~a = 1

2Tr (M~σ), and ~σ = (σ1, σ2, σ3)

is the Pauli vector.

14. Evaluate (i)
∫∞
−∞[f(x)δ(x− 1) + f(x)δ(x+ 2)] dx; (ii)

∫∞
−∞ f(x) δ′(x)dx (to do this integral

use integration by parts); (iii)
∫∞
−∞[f(x)δ(x − a) − f(x)δ′′(x)]dx; (iv)

∫∞
−∞Θ(x) Θ(1 − x) f(x) dx;

(v)
∫∞
−∞Θ(x) Θ(b− x)x f(x) dx; (vi)

∫∞
−∞[f(x) δ(x− π)− f(x)δ′(x− 2π) + f(x)δ′′(x− b)]dx.

15. Show that: (i) d
dx |x| = sgn x = Θ(x)−Θ(−x), where |x| =

{
x if x > 0

−x if x < 0
; (ii) d2

dx2
|x| =

d
dxsgn x = 2δ(x).



SOLUTIONS

1. Let λ ∈ F , and let Vλ denote the set of eigenvectors for λ, together with 0. You have to

show that Vλ is a subspace of V . By construction, 0 ∈ Vλ. Suppose x,y ∈ Vλ, then T (x) = λx

and T (y) = λy. Hence T (x+ y) = T (x) + T (y) = λx+ λy = λ(x+ y), so x+ y ∈ Vλ. Similarly,

if c ∈ F ,then T (cx) = cT (x) = cλx = λ(cx), so cx ∈ Vλ. Therefore Vλ is a subspace.

2 (i) In order to prove this collection is linearly independent, you need to show that if c1t +

c2 sin t+ c3 cos 2t+ c4 sin t cos t = 0 for all t, then c1 = c2 = c3 = c4 = 0. Firstly, plug in t = 0, and

find that 0 + 0 + c3 + 0 = 0, so that c3 = 0. Plugging this into the original equation, you now have

c1t + c2 sin t + c4 sin t cos t = 0, for all t. Secondly, plug in t = π, and find that c1π + 0 + 0 = 0,

so that c1 = 0. Plugging this into the original equation, you now have c2 sin t + c4 sin t cos t = 0

for all t. Thirdly, plug in t = π/2, and find that c2 + 0 = 0, so that c2 = 0. Plugging this into

our original equation, you now have: c4 sin t cos t = 0 for all t. Finally, plug in t = π/4, to find

c4(
√

2/2)(
√

2/2) = 0, or c4 = 0. So, overall, you have proven that c1 = c2 = c3 = c4 = 0, and thus

that the given collection of functions is linearly independent. (ii) Every element of span {(3, 4)}
has the form (3t, 4t), where t ∈ R. An element of span {(3, 4)} would then be a unit vector if

and only if ‖(3t, 4t)‖ = 1; in other words, if (3t)2 + (4t)2 = 1. This equation has two solutions,

t = ±1/5. Therefore, span {(3, 4)} has two unit vectors, (3/5, 4/5) and (−3/5,−4/5).

3. (i)

AB =

 1 2 −1

0 3 1

2 0 1


 2 1 0

0 −1 2

1 1 3

 =

 1 −2 1

1 −2 9

5 3 3


Expand by the first row

|AB| = 1

∣∣∣∣∣ −2 9

3 3

∣∣∣∣∣+ 2

∣∣∣∣∣ −1 9

5 3

∣∣∣∣∣+ 1

∣∣∣∣∣ 1 −2

5 3

∣∣∣∣∣ = −104

(ii)

AC =

 1 2 −1

0 3 1

2 0 1


 2 1

4 3

1 0

 =

 9 7

13 9

5 2


(iii)

ABC = A(BC) =

 1 2 −1

0 3 1

2 0 1


 8 5

−2 −3

9 4

 =

 −5 −5

3 −5

25 14


(iv)

BTAT =

 2 0 1

1 −1 1

0 2 3


 1 0 2

2 3 0

−1 1 1

 =

 1 1 5

−2 −2 3

1 9 3


AB− BTAT =

 0 −3 −4

3 0 6

4 −6 0





4. The product of two orthogonal matrices AB will be an orthogonal matrix C ⇔ CT = C−1.
Now, Cij =

∑
k AikBkj and (CT )ij = Cji =

∑
k AjkBki =

∑
k BkiAjk. Identifying Bki = (BT )ik

and Ajk = (AT )kj we have (CT )ij =
∑

k(B
T )ik(A

T )kj , or equivalently CT = (AB)T = BTAT . Then

(AB)T = BTAT , but because A and B are orthogonals AT = A−1 and BT = B−1. Multiplying the

expression (AB)T = BTAT by AB from the right we have (AB)TAB = BTATAB = BTB = 1. Then

1 = (AB)−1AB therefore (AB)T = (AB)−1 and the matrix C is orthogonal.

5. Note that a matrix A ∈ Cn×n is nilpotent of degree k, if k is a positive integer such that

Ap = 0n×n for p ≥ k, and Ap 6= 0n×n for 0 < p < k. Suppose λ 6= 0 is an eigenvalue corresponding

to the eigenvector x 6= 0. It follows that Ax = λx and Akx = λkx. However, by the nilpotent

assumption Ak = 0n×n and therefore Akx = 0n×nx = 0 = λkx. Since x 6= 0, it follows that λ = 0,

which is a contradiction. Therefore all λ must be zero.

6. (i) Note that T ((x, y) + (z, w)) = T (x + z, y + w) = ((x + z)2, y + w) 6= (x2, y) + (z2, w) =

T (x, y) + T (z, w). So, T does not preserve additivity. So, T is not linear. (ii) Note that

(−2, 4,−1) = −2(1, 0, 0) + 4(0, 1, 0) − (0, 0, 1), so T (−2, 4,−1) = −2T (1, 0, 0) + 4T (0, 1, 0) −
T (0, 0, 1) = (−4,−8, 2) + (4, 12,−8) + (0,−2, 2) = (0, 6,−8). (iii) T (−4, 5, 1) = (2 × (−4) − 5, 2 ×

(−5)− 3× (−4),−4− 1) = (−13, 2,−5). (iv) T (1, 0,−1, 3, 0) =

(
−1 2 1 3 4

0 0 2 −1 0

)
1

0

−1

3

0

 =

(
7

−5

)
. (v) With e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T it follows that T (e1) = 3

2

0

, T (e2) =

 −2

−3

1

, T (e3) =

 1

0

−4

, so the matrix representation in the standard

basis is

 3 −2 1

2 −3 0

0 1 −4

, and T (2,−1,−1) =

 3 −2 1

2 −3 0

0 1 −4


 2

−1

−1

 =

 7

7

3

. (vi) Rel-

ative to the standard basis, the matrix of T is

 3 0 −2

0 1 0

3 4 0

. It is sufficient to prove that

this matrix is invertible. Its determinant is, using the column expansion for the last column,

−2 × (0 × 4 − 1 × 3) = 6 6= 0. Therefore, the matrix is invertible because its column vec-

tors are linearly independent. The inverse matrix is

 0 −4
3

1
3

0 1 0

−1
2 −2 1

2

, so that T−1 is given by:

T−1(a1, a2, a3) = (−4
3a2 −

1
3a3, a2,−

1
2a1 − 2a2 + 1

2a3).

7. (i) Write x = r cosφ and y = r sinφ, where r =
√
x2 + y2 and tanφ = y/x. By definition

T (x, y) = (r cos(φ + θ), r sin(φ + θ)). Using trigonometric formulas r cos(φ + θ) = r cosφ cos θ −



r sinφ sin θ = x cos θ− y sin θ and r sin(φ+ θ) = r sinφ cos θ+ r cosφ sin θ = y cos θ+x sin θ. Thus,

T (x, y) = A

(
x

y

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
. (ii) The matrix representation in the stan-

dard basis A =

(
−1

2 −
√
3
2√

3
2 −1

2

)
, and therefore T (2, 2) =

(
−1

2 −
√
3
2√

3
2 −1

2

)(
2

2

)
=

(
−1−

√
3

−1 +
√

3

)
.

(iii) det(A−λ1) =

(
cos θ − λ − sin θ

sin θ cos θ − λ

)
= λ2−2λ cos θ+ 1, then λ1,2 = cos θ±

√
cos2 θ − 1⇒

λ1,2 = a± ib, b 6= 0, i.e. λ1,2 /∈ R. Hence, the eigenvectors are not real and /∃B ∈M(R), such that

B−1AB is diagonal.

8. (i) Let w ∈ Rn and µ ∈ R, then you can easily check by direct substitution that projx(y +

w) = projx(y) + projx(w) and projx(µy) = µ [projx(y)]. (ii) T (y1, y2) = projx(y1, y2) =
x . (y1,y2)
‖x‖2 x = (1,−5) . (y1,y2)

‖(1,−5)‖2 (1,−5) = y1−5y2
26 (1,−5) =

(
y1−5y2

26 , −5y1+25y2
26

)
. Thus, with e1 = (1, 0)T ,

e2 = (0, 1)T you obtain T (e1) =

(
1
26

− 5
26

)
, T (e2) =

(
− 5

26
25
26

)
, so the “standard matrix” is

A =

(
1
26 − 5

26

− 5
26

25
26

)
, and therefore T (2, 3) =

(
1
26 − 5

26

− 5
26

25
26

)(
2

3

)
=

(
−1

2
65
26

)
.

9. (i) Assume Ax = λx; then it follows that

λ‖x‖2 = 〈x,Ax〉 = 〈Ax, x〉 = λ∗‖x‖2 ⇒ λ∗ = λ .

(ii) Assume Ax = λx and Ay = µy, with λ 6= µ. It follows that,

(λ− µ)〈y,x〉 = 〈y, Ax〉 − 〈Ay,x〉 = 0⇒ 〈y,x〉 = 0 .

Therefore, x ⊥ y if λ 6= µ.

10. (i) Derive this using matrix multiplication (AB)ij =
∑n

k=1AikBkj , where (AB)ij denotes

the (i, j)th entry of (AB), and likewise for A and B. Then (AB)†ji = (A∗B∗)ji
T = (A∗B∗)ij =∑n

k=1A
∗
ikB
∗
kj =

∑n
k=1(A

∗
ki)

T (B∗jk)
T =

∑n
k=1(B

∗
jk)

T (A∗ki)
T =

∑n
k=1B

†
jkA

†
ki. The product on

the right is the (j, i)th entry of B†A†, while (AB)†ji is the (j, i)th entry of (AB)†. Therefore,

(AB)† = B†A†. (ii) If A is Hermitian, then A = UDU†, where U is unitary and D is a real di-

agonal matrix. Therefore, A−1 = (UDU†)−1 = (U†)−1D−1U−1 = UD−1U†, because U−1 = U†. Note

that D−1 is just the diagonal matrix with entries λ−1i (where the λi are the entries in D). Hence,

(A−1)† = (UD−1U†)† = U(D−1)†U† = UD−1U† = A−1, because D−1 is a real matrix, so that A−1 is

Hermitian.

11. For σ1 the eigenvalue relation

det

(
−λ 1

1 −λ

)
= 0



leads to λ2 = 1, which implies λ = ±1. For λ = 1, we have(
−1 1

1 −1

)(
x1
x2

)
=

(
0

0

)
⇒

{
−x1 + x2 = 0

x1 − x2 = 0
,

yielding x1 = x2 = 1/
√

2. For λ = −1, we have(
1 1

1 1

)(
x1
x2

)
=

(
0

0

)
⇒

{
x1 + x2 = 0

x1 + x2 = 0
,

yielding x1 = −x2 = 1/
√

2.

For σ2 the eigenvalue relation

det

(
−λ −i
i −λ

)
= 0

leads to λ2 = 1, which implies λ = ±1. For λ = 1, we have(
−1 −i
i −1

)(
x1
x2

)
=

(
0

0

)
⇒

{
x1 + ix2 = 0

ix1 − x2 = 0
,

yielding x1 = i/
√

2 and x2 = −1/
√

2. For λ = −1, we have(
1 −i
i 1

)(
x1
x2

)
=

(
0

0

)
⇒

{
x1 − ix2 = 0

ix1 + x2 = 0
,

yielding x1 = i/
√

2 and x2 = 1/
√

2.

For σ3, the eigenvalue relation

det

(
1− λ 0

0 1− λ

)
= 0

leads to −(1− λ)(1 + λ) = 0, which implies λ = ±1. For λ = 1, we have(
0 0

0 −2

)(
x1
x2

)
=

(
0

0

)
⇒

{
0 = 0

−2x2 = 0
,

yielding x1 = 1 and x2 = 0. For λ = −1, we have(
2 0

0 0

)(
x1
x2

)
=

(
0

0

)
⇒

{
2x1 = 0

0 = 0
,

yielding x1 = 0 and x2 = 1.

All in all, each Pauli matrix has eigenvalues 1 and −1. The normalized eigenvectors are

σ1 ⇒ 1√
2

(
1

1

)
,

1√
2

(
1

−1

)
;

σ2 ⇒ 1√
2

(
1

i

)
,

1√
2

(
1

−i

)
;

σ3 ⇒

(
1

0

)
,

(
0

1

)
.



12. It is straightforward to check that the multiplication of two different Pauli matrices yields

the third one multiplied by the (positive or negative) imaginary unit, i.e., σ1σ2 = iσ3, σ1σ3 = −iσ2,
σ2σ3 = iσ1, σ2σ1 = −iσ3, σ3σ1 = iσ2, σ3σ2 = −iσ1. This may be expressed in more compact form

for all cyclic permutations of i, j, k ∈ {1, 2, 3} as

σiσj = δij12 + i

3∑
k=1

εijkσk .

As a direct consequence of this last relation the commutation and anticommutation relations for

Pauli spin matrices are given by

[σi, σj ] = 2i

3∑
k=1

εijkσk and {σi, σj} = 2δij12 .

13. Suppose

α1 + βσ1 + ζσ2 + ξσ3 =

(
α+ ξ β − iζ
β + iζ α− ξ

)
=

(
0 0

0 0

)
. (1)

Then α = −ξ and α = ξ ⇔ α = ξ = 0. Similarly, β = −iζ and β = iζ, which implies β = ζ = 0.

(ii) Now we show that the vectors {1, σ1, σ2, σ3} span the 2× 2 matrix space. Let

M =

(
m11 m12

m21 m22

)

=
1

2
(m11 +m22)

(
1 0

0 1

)
+

1

2
(m11 −m22)

(
1 0

0 −1

)

+
1

2
(m12 +m21)

(
0 1

1 0

)
+
i

2
(m12 −m21)

(
0 −i
i 0

)
=

1

2
(m11 +m22)1 +

1

2
(m12 +m21)σ1 +

i

2
(m12 −m21)σ2

+
1

2
(m11 −m22)σ3 . (2)

Note that
1

2
Tr [M] =

1

2
(m11 +m22) (3)

and so the first term in (2) can be written as 1
2Tr [M]1. Now,

1

2
Tr [Mσ1] =

1

2
Tr

(
m12 m11

m22 m21

)
=

1

2
(m12 +m21)

1

2
Tr [Mσ2] =

1

2
Tr

(
i m12 −i m11

i m22 −i m21

)
=

1

2
(m12 −m21)

1

2
Tr [Mσ3] =

1

2
Tr

(
m11 −m12

m21 −m22

)
=

1

2
(m11 −m22) .



We define, Mσ = (Mσ1,Mσ2,Mσ3) so that the last three terms in (2) can be written as 1
2Tr [Mσ] ·σ.

Therefore, any 2×2 matrix can be written as M = a01+a·σ, where a0 = 1
2Tr [M] and a = 1

2 Tr [Mσ].

14. (i)
∫∞
−∞[f(x)δ(x − 1) + f(x)δ(x + 2)] dx = f(1) + f(−2); (ii)

∫∞
−∞ f(x) δ′(x)dx = −f ′(0) ;

(iii)
∫∞
−∞[f(x)δ(x−a)−f(x)δ′′(x)]dx = f(a)−f ′′(0); (iv)

∫∞
−∞Θ(x) Θ(1−x) f(x) dx =

∫ 1
0 f(x) dx;

(v)
∫∞
−∞Θ(x) Θ(b−x)x f(x) dx =

∫ b
0 x f(x) dx; (vi)

∫∞
−∞[f(x) δ(x−π)−f(x)δ′(x−2π)+f(x)δ′′(x−

b)]dx = f(π) + f ′(2π) + f ′′(b).

15. The signum function is the derivative of the absolute value function (up to the indeterminacy

at zero), |x| =

{
x if x > 0

−x if x < 0
⇒ |x|′ =

{
1 if x > 0

−1 if x < 0
= sgn(x); on the other hand, Θ(x) ={

0 if x < 0

1 if x > 0
, hence Θ(x)−Θ(−x) =

{
1 if x > 0

−1 if x < 0
= sgn(x) = |x|′. (ii) The signum function

is differentiable with derivative zero everywhere except at zero. It is not differentiable at zero in

the ordinary sense, but under the generalised notion of differentiation in distribution theory you

may write [sgn(x)]′ = [Θ(x)−Θ(−x)]′ = 2δ(x). Then |x|′′ = [sgn(x)]′ = 2δ(x).


