

3.1 Potential Energy and Conservative Forces

Electric force is a conservative force

Work done by electric force \vec{F} as charge moves infinitesimal distance $d\vec{s}$ along $\operatorname{Path} A = dW$

Note $-d\vec{s}$ is in tangent direction of curve of $\operatorname{Path} A$ $dW = \vec{F} \cdot d\vec{s}$

 $dec{\cdot}$. Total work done Wby force $ec{F}$ in moving particle from Point 1 to Point 2

$$W = \int_{1}^{2} \vec{F} \cdot d\vec{s}$$
Path A

 \int_{1}^{2} = Path Integral = Integration over Path A from point 1 to point 2

 $\operatorname{Path} A$

DEFINITION

A force is **conservative if** work done on a particle by force is **independent of path taken**

... For conservative forces

$$\int_{1}^{2} \vec{F} \cdot d\vec{s} = \int_{1}^{2} \vec{F} \cdot d\vec{s}$$
Path A Path B

Let's consider a path starting at point 1 to 2 through $Path\,A$ and from 2 to 1 through $Path\,C$

Work done =
$$\int_{1}^{2} \vec{F} \cdot d\vec{s} + \int_{2}^{1} \vec{F} \cdot d\vec{s}$$
Path A
Path C
$$= \int_{1}^{2} \vec{F} \cdot d\vec{s} - \int_{1}^{2} \vec{F} \cdot d\vec{s}$$
Path A
Path B

Alternative **DEFINITION**

Work done by a conservative force on a particle when it moves around a closed path returning to its initial position is zero

Conclusion

Since work done by a conservative force \vec{F} is path-independent we can define a quantity: **potential energy**

that depends only on position of particle

Convention We define potential energy U such that

$$dU = -W = -\int \vec{F} \cdot d\vec{s}$$

... For particle moving from 1 to 2

$$\int_{1}^{2} dU = U_{2} - U_{1} = -\int_{1}^{2} \vec{F} \cdot d\vec{s}$$

where U_1, U_2 are potential energy at position 1, 2

Example

Suppose charge q_2 moves from point 1 to 2

From definition
$$=$$
 $U_2-U_1=-\int_1^2 \vec{F}\cdot d\vec{r}$
$$=-\int_{r_1}^{r_2} F\,dr \quad (\because \vec{F}\parallel d\vec{r})$$

$$=-\int_{r_1}^{r_2} \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r^2}\,dr$$

$$=\frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r} \bigg|_{r_1}^{r_2}$$

$$-\Delta W = \Delta U = \frac{1}{4\pi\epsilon_0} q_1q_2 \left(\frac{1}{r_2}-\frac{1}{r_1}\right)$$

Note

- 1 This result is generally true for 2-D and/or 3-D motion
- ② If q_2 moves away from q_1 then $r_2 > r_1$ we have
 - If q_1,q_2 are of same sign then $\Delta U<0, \quad \Delta W>0$ ($\Delta W=$ Work done by electric **repulsive** force)
 - If q_1,q_2 are of different sign then $\Delta U>0, \quad \Delta W<0$ ($\Delta W=$ Work done by electric attractive force)
- - \Box If q_1,q_2 are of same sign then $\Delta U>0, \quad \Delta W<0$
 - \Box If q_1,q_2 are of **different** sign then $\Delta U < 0, \quad \Delta W > 0$

4 Note: It is the difference in potential energy that is important

REFERENCE POINT
$$U(r=\infty)=0$$

$$\therefore U_{\infty}-U_{1}=\frac{1}{4\pi\epsilon_{0}}q_{1}q_{2}\Big(\frac{1}{r_{2}}-\frac{1}{r_{1}}\Big)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

If q_1, q_2 same sign then U(r) > 0 for all r If q_1, q_2 opposite sign then U(r) < 0 for all r

5 Conservation of Mechanical Energy
For a system of charges with no external force,

$$E=K+U={
m Constant}$$
 Kinetic Energy Potential Energy

or
$$\Delta E = \Delta K + \Delta U = 0$$

Potential Energy of a System of Charges

Example P.E. of 3 charges q_1, q_2, q_3

Start q_1,q_2,q_3 all at $r=\infty,\,U=0$

Step 1

Move q_1 from ∞ to its position $\Rightarrow U = 0$

Step 2 Move q_2 from ∞ to new position $\Rightarrow U = \frac{1}{4\pi\epsilon_0} \frac{q_1q_2}{r_{12}}$

Step 3 r_{12} Move q_3 from ∞ to new position \Rightarrow Total P.E $U = \frac{1}{4\pi\epsilon_0} \left[\frac{q_1q_2}{r_{12}} + \frac{q_1q_3}{r_{13}} + \frac{q_2q_3}{r_{23}} \right]$

$$U = \frac{1}{4\pi\epsilon_0} \left[\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right]$$

Step 4 What if there are 4 charges?

3.2 Electric Potential

Let q be charge at the center and consider its effect on test charge q_0

DEFINITION We define electric potential V so that

$$\Delta V = \frac{\Delta U}{q_0} = \frac{-\Delta W}{q_0}$$
 (\therefore V is P.E. per unit charge)

- O Similarly we take $V(r=\infty)=0$
- O Electric Potential is a scalar
- O Unit $ightharpoonup \operatorname{Volt}(V) = \operatorname{Joules/Coulomb}$
- O For a single point charge $\ V(r) = rac{1}{4\pi\epsilon_0} \cdot rac{q}{r}$
- \bigcirc Energy Unit lacktriangledown $\Delta U = q \Delta V$

electron – volt (eV) =
$$\underbrace{1.6 \times 10^{-19} \text{ J}}_{\text{charge of electron/C}}$$

Potential For A System of Charges

For a total of N point charges potential V at any point P can be derived from **principle of superposition**

Recall that potential due to q_1 at point P

$$V_1 = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1}{r_1}$$

 \therefore Total potential at point P due to N charges **principle of superposition**

$$V = V_1 + V_2 + \dots + V_N = \frac{1}{4\pi\epsilon_0} \left[\frac{q_1}{r_1} + \frac{q_2}{r_2} + \dots + \frac{q_N}{r_N} \right]$$

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{q_i}{r_i}$$

Note For \vec{E}, \vec{F} we have a sum of vectors For V, U we have a sum of scalars

Example

Potential of an electric dipole

Consider potential of point $% \left(x\right) =\left(x\right) +\left(x\right) =0$ at distance $x>\frac{d}{2}$ from dipole P

$$V = \frac{1}{4\pi\epsilon_0} \left[\frac{+q}{x - \frac{d}{2}} + \frac{-q}{x + \frac{d}{2}} \right]$$

Special Limiting Case $-x\gg d$

$$\frac{1}{x \mp \frac{d}{2}} = \frac{1}{x} \cdot \frac{1}{1 \mp \frac{d}{2x}} \simeq \frac{1}{x} \left[1 \pm \frac{d}{2x} \right]$$

$$\therefore V = \frac{1}{4\pi\epsilon_0} \cdot \frac{q}{x} \left[1 + \frac{d}{2x} - \left(1 - \frac{d}{2x} \right) \right]$$

$$V = \frac{p}{4\pi\epsilon_0 x^2} \quad \text{Recall} - p = qd$$

For a point charge $\ E \propto rac{1}{r^2} \quad V \propto rac{1}{r}$

For a dipole $E \propto rac{1}{r^3} \quad V \propto rac{1}{r^2}$

For a quadrupole $\ E \propto rac{1}{r^4} \quad V \propto rac{1}{r^3}$

Electric Potential of Continuous Charge Distribution

For any charge distribution we write electrical potential dV due to infinitesimal charge dq

$$dV = \frac{1}{4\pi\epsilon_0} \cdot \frac{dq}{r}$$

$$\therefore V = \int \frac{1}{4\pi\epsilon_0} \cdot \frac{dq}{r}$$
charge distribution

Similar to previous examples on E-field for case of uniform charge distribution

$$1-D \Rightarrow long road$$

$$\Rightarrow dq = \lambda dx$$

$$2-D \Rightarrow$$
 charge sheet

$$\Rightarrow dq = \sigma dA$$

$$3-D \Rightarrow$$
 uniformly charge body

$$\Rightarrow dq = \rho dV$$

Example (1)

Uniformly-charged ring

Length of infinitesimal ring element $=ds=Rd\theta$

Charge density λ

 \therefore charge $dq = \lambda \, ds$

$$=\lambda R d\theta$$

$$dV = \frac{1}{4\pi\epsilon_0} \cdot \frac{dq}{r} = \frac{1}{4\pi\epsilon_0} \cdot \frac{\lambda R d\theta}{\sqrt{R^2 + z^2}}$$

Integration is around entire ring

$$\therefore V = \int_{\text{ring}} dV$$

$$= \int_{0}^{2\pi} \frac{1}{4\pi\epsilon_{0}} \cdot \frac{\lambda R d\theta}{\sqrt{R^{2} + z^{2}}}$$

$$= \frac{\lambda R}{4\pi\epsilon_0\sqrt{R^2 + z^2}} \underbrace{\int_0^{2\pi} d\theta}_{2\pi}$$

Total charge on ring
$$= \lambda \cdot (2\pi R)$$

$$V = \frac{Q}{4\pi\epsilon_0 \sqrt{R^2 + z^2}}$$

LIMITING CASE
$$\ = \ z \gg R \Rightarrow V = rac{Q}{4\pi\epsilon_0\sqrt{z^2}} = rac{Q}{4\pi\epsilon_0|z|}$$

Example (2) Uniformly-charged disk

Using principle of superposition

we will find potential of disk of uniform charge density

by integrating potential of concentric rings

$$\therefore dV = \frac{1}{4\pi\epsilon_0} \int_{\text{disk}} \frac{dq}{r}$$

Total charge = QCharge density = σ Ring of radius $x - dq = \sigma dA = \sigma(2\pi x dx)$

$$V = \int_0^R \frac{1}{4\pi\epsilon_0} \cdot \frac{\sigma 2\pi x dx}{\sqrt{x^2 + z^2}}$$
$$= \frac{\sigma}{4\epsilon_0} \int_0^R \frac{d(x^2 + z^2)}{(x^2 + z^2)^{1/2}}$$

$$\begin{split} V &= \frac{\sigma}{2\epsilon_0} \left(\sqrt{z^2 + R^2} - \sqrt{z^2} \right) \\ &= \frac{\sigma}{2\epsilon_0} \left(\sqrt{z^2 + R^2} - |z| \right) \quad \text{Recall } |x| = \left\{ \begin{matrix} +x; & x \geq 0 \\ -x; & x < 0 \end{matrix} \right. \end{split}$$

LIMITING CASE -

① If
$$|z|\gg R$$

$$\sqrt{z^2 + R^2} = \sqrt{z^2 (1 + \frac{R^2}{z^2})}$$

$$= |z| \cdot (1 + \frac{R^2}{z^2})^{\frac{1}{2}} \qquad ((1 + x)^n \approx 1 + nx \text{ if } x \ll 1)$$

$$\approx |z| \cdot (1 + \frac{R^2}{2z^2}) \qquad (\frac{|z|}{z^2} = \frac{1}{|z|})$$

.. At large
$$z,\,V\simeq rac{\sigma}{2\epsilon_0}\cdotrac{R^2}{2|z|}=rac{Q}{4\pi\epsilon_0|z|}$$
 (like a point charge)

where $Q = \text{total charge on disk} = \sigma \cdot \pi R^2$

② If
$$|z| \ll R$$

$$\sqrt{z^2 + R^2} = R \cdot \left(1 + \frac{z^2}{R^2}\right)^{\frac{1}{2}}$$

$$\simeq R \left(1 + \frac{z^2}{2R^2}\right)$$

$$\therefore V \simeq \frac{\sigma}{2\epsilon_0} \left[R - |z| + \frac{z^2}{2R} \right]$$

At
$$z\,=\,0,\,V\,=\,rac{\sigma R}{2\epsilon_0}$$
 Let's call this V_0

$$\therefore V(z) = \frac{\sigma R}{2\epsilon_0} \left[1 - \frac{|z|}{R} + \frac{z^2}{2R^2} \right]$$

$$V(z) = V_0 \left[1 - \frac{|z|}{R} + \frac{z^2}{2R^2} \right]$$

- \Rightarrow A convenience reference point to compare in this example is potential of charged disk
- : Important quantity here is

$$V(z) - V_0 = -\frac{|z|}{R} V_0 + \frac{z^2}{2R^2} V_0$$

neglected as $z \ll R$

$$V(z) - V_0 = -\frac{V_0}{R} |z|$$

3.3 Relation Between Electric Field E and Electric Potential V

(A) To get V from \vec{E}

Recall our definition of potential V

$$\Delta V = \frac{\Delta U}{q_0} = -\frac{W_{12}}{q_0}$$

 ΔU \blacktriangleright is change in P.E.

 ΔW work done in bringing charge q_0 from point 1 to 2

$$\therefore \Delta V = V_2 - V_1 = \frac{-\int_1^2 \vec{F} \cdot d\vec{s}}{q_0}$$

Using definition of \vec{E} -field

$$\Delta V = V_2 - V_1 = -\int_1^2 \vec{E} \cdot d\vec{s}$$

Note Integral on right hand side of above can be calculated along any path from point 1 to 2 (Path-Independent)

Convention
$$V_{\infty}=0 \Rightarrow V_P=-\int_{\infty}^P \vec{E} \cdot d\vec{s}$$

(B) To get \vec{E} from V \blacktriangleright use definition of V

(i.e. Potential = V on the surface)

$$\Delta U = q_0 \Delta V = \underbrace{-\Delta W}_{\text{work done}}$$

$$\Delta W = \underbrace{q_0 \vec{E} \cdot \Delta \vec{s}}_{\text{electric force}}$$

 $E_s - \vec{E}$ -field component along path $\Delta \vec{s}$

$$\therefore q_0 \Delta V = -q_0 E_s \Delta s$$

$$\therefore E_s = -\frac{\Delta V}{\Delta s}$$

For infinitesimal Δ_S

$$\therefore E_s = -\frac{dV}{ds}$$

All in all...

- (1) \vec{E} -field component along any direction is negative derivative of potential along same direction
- (2) If $d ec s \perp ec E$ then $\Delta V = 0$
- (3) ΔV is biggest/smallest if $\left. d ec{s} \, \right\| \, ec{E}$

Generally for a potential V(x,y,z) relation between $ec{E}(x,y,z)$ and V is

$$E_x = -\frac{\partial V}{\partial x}$$
 $E_y = -\frac{\partial V}{\partial y}$ $E_z = -\frac{\partial V}{\partial z}$

 $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}$ are partial derivatives

For $\frac{\partial}{\partial x}\,V(x,y,z)$ everything y,z are treated like a **constant** and we only take derivative with respect to x

Example If $V(x,y,z) = x^2y - z$

$$\frac{\partial V}{\partial x} = 2xy$$

$$\frac{\partial V}{\partial y} = x^2$$

$$\frac{\partial V}{\partial z} = -1$$

For other co-ordinate systems

① Cylindrical:

$$V(r,\theta,z) \begin{cases} E_r = -\frac{\partial V}{\partial r} \\ E_\theta = -\frac{1}{r} \cdot \frac{\partial V}{\partial \theta} \\ E_z = -\frac{\partial V}{\partial z} \end{cases}$$

2 Spherical:

$$V(r, \theta, \phi) \begin{cases} E_r = -\frac{\partial V}{\partial r} \\ E_{\theta} = -\frac{1}{r} \cdot -\frac{\partial V}{\partial \theta} \\ E_{\phi} = -\frac{1}{r \sin \theta} \cdot \frac{\partial V}{\partial \phi} \end{cases}$$

Note -

Calculating V involves summation of **scalars** which is easier than adding **vectors** for calculating E-field

 $dec{E}$. To find $ec{E}$ -field of a general charge system

we first calculate $\,V\,$ and then derive $ec E\,$ from partial derivative

Example Uniformly charged disk From potential calculations

From potential calculations

$$V=\frac{\sigma}{2\epsilon_0}\left(\sqrt{R^2+z^2}-|z|\right)$$
 for a point along z-axis

For
$$z > 0$$
, $|z| = z$

$$\therefore E_z = -\frac{\partial V}{\partial z} = \frac{\sigma}{2\epsilon_0} \left[1 - \frac{z}{\sqrt{R^2 + z^2}} \right]$$

3.4 Equipotential Surfaces

Equipotential surface is a surface on which potential is constant

$$V(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{+q}{r} = const$$

$$\Rightarrow r = const$$

 \Rightarrow Equipotential surface are circles/spherical surface

Note -

- ① A charge can move freely on an equipotential surface without any work done
- ② Electric field lines must be perpendicular to equipotential surfaces On an equipotential surface V=constant (Why?)
- $\Rightarrow \Delta V = 0 \Rightarrow ec{E} \cdot dec{l} = 0$ where $dec{l}$ is tangent to equipotential surface
- $ec{E}$ must be **perpendicular** to equipotential surfaces

Example

Uniformly charged surface (infinite)

Recall

$$V = V_0 - \frac{\sigma}{2\epsilon_0}|z|$$
 Potential at $z=0$

Equipotential surface means

$$V = const \Rightarrow V_0 - \frac{\sigma}{2\epsilon_0}|z| = C$$
$$\Rightarrow |z| = constant$$

Example

Isolated spherical charged conductors

- ① E-field inside = 0
- 2 charge distributed on outside of conductors

(i) Inside conductor

$$E=0 \Rightarrow \Delta V=0$$
 everywhere in conductor
$$\Rightarrow V=constant \ \mbox{everywhere in conductor}$$

 \Rightarrow entire conductor is at same potential

(ii) Outside conductor

$$V = \frac{Q}{4\pi\epsilon_0 r}$$

: Spherically symmetric

(Just like a point charge)

BUT not true for conductors of arbitrary shape

Example Connected conducting spheres

Two conductors connected can be seen as a single conductor

· Potential everywhere is identical

29

Potential of radius
$$R_1$$
 sphere $ightharpoonup V_1 = \frac{q_1}{4\pi\epsilon_0 R_1}$

$$V_1 = V_2$$

$$\Rightarrow \frac{q_1}{R_1} = \frac{q_2}{R_2} \Rightarrow \frac{q_1}{q_2} = \frac{R_1}{R_2}$$

$$U_{R} = \frac{1}{4\pi\varepsilon_{0}} \frac{Q}{R} = \frac{4\pi R^{2} \sigma_{R}}{4\pi\varepsilon_{0} R} = \frac{R\sigma_{R}}{\varepsilon_{0}}$$

$$U_{r} = \frac{1}{4\pi\varepsilon_{0}} \frac{q}{r} = \frac{4\pi r^{2} \sigma_{r}}{4\pi\varepsilon_{0} r} = \frac{r\sigma_{r}}{\varepsilon_{0}}$$

$$U_R = U_r \qquad \frac{Q}{q} = \frac{R}{r}$$

$$\frac{\sigma_r}{\sigma_R} = \frac{R}{r}$$

In a qualitative way, for a conductor of arbitrary shape, the charge density distribution on its surface is inverse proportional with its radius of curvature.

