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3.1 Potential Energy and Conservative Forces
Electric force is a conservative force

Work done by electric force F as
charge moves infinitesimal distance ds
along Path A = dW

Note w5 is in tangent direction of curve of Path A

dW = F - d3
". Total work done Wby force Fin moving particle from Point 1 to Point 2

we[F
Path A

/ = Path Integral = Integration over Path A from point 1 to point 2
1
Path A
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DEFINITION

A force is conservative if work done on a particle by force is

N

1}“‘%
1 J
Path B

Path A
fﬁ 2
1 J
Path C

independent of path taken

.". For conservative forces

2 2
/F-d§:/F-d§’
1 1

Path A Path B

Let's consider a path starting at point 1 to 2
through Path A and from 2 to 1 through Path C

2 1
Workdone:/ ﬁ-d§+/ F.ds
1 2

Path A Path C

2 2
= /F-d§'—/F-d§’
1 1

Path A Path B
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Alternative Work done by a conservative force on a particle
DEFINITION when it moves around a closed path
returning to its initial position is zero

Conclusion

Since work done by a conservative force F is path-independent

we can define a quantity: potential energy
that depends only on position of particle

Convention We define potential energy U such that
WZ—W:—/ﬁM§

.". For particle moving from 1 to 2

2 2
/dU:UQ—Ulz—/F-d§
1 1

where [/, Uy are potential energy at position 1, 2
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Example

> " LI d7 " Suppose charge G2 moves
9, (Jz; 9 from point 1 to 2
F
2
From definition m 7, — [J; = /
1
/ Fdr (- F|| d)
1
_ _/ ngz dr
- Ameg T
1 quge '
dmeg T -
1
—AW = AU =

1 1
d142 <— — —)
47’(’60 T 1
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Note
@ This result is generally true for 2-D and/or 3-D motion

@ If g5 moves away from q; then T2 > 71 we have

JAIf g1,Qq2 are of same sign then AU < 0, AW >0
(AW = Work done by electric repulsive force)

If ¢1,Q2 are of different sign then AU > 0, AW < 0
(AW = Work done by electric attractive force)

@ If g2 moves towards g1 then 719 < 11 we have

AIf q1,qo are of same sign then AU > 0, AW < 0

AIf g1, qo are of different sign then AU < 0, AW > 0
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@ Note: It is the difference in potential energy that is important
REFERENCE POINT (/(r = o0) = 0

1 1 1
S U — Ul = C]1612(— — —)

47’(’60 T T1
|
1 q1 C]2OO
Ulr) = -
(T) deg r

If 91, g2 same sign then U(r) > 0 forall 7
If q1,q2 opposite sign then U(r) < Ofor all 7

® Conservation of Mechanical Energy

For a system of charges with no external force,

FE = K 4+ U = Constant
o \
Kinetic Energy Potential Energy

or AF = AK + AU =0
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Potential Energy of a System of Charges
Example P.E. of 3 charges 41,42,43
Start §1,492,G3allat 7 = o0, U = 0

Step1 (4 Move 41 from OC fo its position = U = ()

q,

2 " I qig2

Step 2 Move G2 from OO to new position = [/ =
47’(’60 712

q,

Step 3 % \ Move (@3 from 0O to new position = Total P.E

1
[C]1Q2 n d143 n qd243
12 13 23

47’(’60

Stepd4 What if there are 4 charges?
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3.2 Electric Potential

Let g be charge at the center and consider its effect on test charge qo
DEFINITION We define electric potential V so that

AU —AW

do do
(. Vis P.E. per unit charge)

AV =

O Similarly = we take V(r = o) = 0
O Electric Potential is a scalar

O Unit = VoIt (V') = Joules/Coulomb

1 q
dmeg T

O For a single point charge V(1) =

O Energy Unit @ AU = qAV

elecrton — volt (eV) 1.6x107"J

charge of electron/C
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Potential For A System of Charges

For a total of IV point charges
potential V' at any point P
can be derived from

& principle of superposition

1 41
47’(’60 1

Vi =

. Total potential at point P due to [V charges
principle of superposition

1
V=WVM+Vh+- -+ Vy = Q1—|———|—
47’(’60 1 T
N
1 i
V= %
47'('60 ilei

C]N
N

Recall that potential due to q1 at point P
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Note For F : Fwe have a sum of vectors

For V,U we have a sum of scalars

Example

Potential of an electric dipole

M

Y

>X

Y
[
Wl
p=qd
Consider potential of point at distance x > 5 from dipole P

V =
47‘(‘60

1 +q —q
it iT
T — 3 T T 5
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Special Limiting Case w = > d

1 1 1 1 d
- = — - — {1 = —]
TF 5 r 1T 5o T 2x
1 q d
dmey + 21 (
vy =2 Recall = p = ¢qd
Ameqa?
. 1 1
For a point charge £ o< — V o —
r r
. 1 1
For a dipole Ex—= Vo
r r
1 1
For a quadrupole £ ox — V x —
r T
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Electric Potential of Continuous Charge Distribution

Similar fo previous examples on E-field for case of uniform charge distribution

1-D = long road

2-D = charge sheet

For any charge distribution
we write electrical potential dV

due to infinitesimal charge dg

1 dq
dmeg T

1 d
vz/ |
dmeg T

charge distribution

dV =

= dg = Adx

= dqg = odA

3-D = uniformly charge body = dq = pdV
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Example (1)

Uniformly-charged ring

Length of infinitesimal ring element = ds = Rdf

[
s L
Charge|density A

aVv

". charge dg
1 dq
B 47‘(’60

Ads

AR df

1

AR dO

ro 4d1eg | VR2 + 22
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Integration is around entire ring

V = / av
ring

_/2“ 1 AR df
N o 4meg VR? 4+ 22

27
_ AR / o
AregV R2 + 22 Jo

N——
2m
s Q
Total charge — 5 5
onring — A - (27 R) dregV R? + 2
Q Q

LIMITINGCASE = 2 > R = V =

dreov/z2  4meo|z]
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Example (2) Uniformly-charged disk

Using principle of superposition
we will find potential of disk
of uniform charge density

by integrating potential of concentric rings

Charge density =c

/R 1 o2rxdx
V= -
0 47’(’60 \/332 — z2

o o d(x? + 2?)
e o (22 + 22)1/2

wo L[
47T€0 disk T

Total charge =Q Ring of radius Tm dq = 0 dA = o(27xdx)

V = 2i(¢z2+R2 — V22
€0
o 4z, x>0
= % (\/Z2 1+ R2 - |ZD Recall |z| = { 2 <0
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LIMITING CASE
D If |z| > R

o (7 B

2
R? .
:\z\-(l—l—?)§ (I+2)"=1+neif 2 < 1)
R? 2 1
=0t o) (5= )
o R? Q) . .
" At large z, V ~ 2 o — F— (like a point charge)

where ) = total charge on disk = o - TR*
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QIf |z| < R

V22 4+ R?2 = R (1+%>§
52
R(1+ 5
o 2?
SF LR
260 & |Z‘ * 2R
R
At z =0,V = oz Lets call this V)
260
oR |2 22
(Z) 260 R * 2R2
LI
V(z) = Voll = 2 4 )
(Z) V() R + 2R2
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—> A convenience reference point fo compare in this example

is potential of charged disk

.. Important quantity here is

2
< <
V(Z) — V() — _|_f{|VO -+ %Q/‘/Q

neglected as z < R

Viz) =V = & |2
V/(\z)
/VO\ c>0=V,>0
0 "z
c <0=7,<0
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3.3 Relation Between Electric Field E and Electric Potential V
(A) To get V' from E

Recall our definition of potential I/

AV — AU ng

4o qo

AU w is change in P.E.
AW  w work done in bringing charge 40 from point 1 o 2

AV =V — Vj = — i
Using definition of E-field ,
AV:V2—V1:—/ E- d3

1

Note m Integral on right hand side of above can be calculated
along any path from point 1 to 2 (Path-Independent)

P
Convention V. =0 = Vp = — / E . ds

©.@)
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(B) To get E from V w use definition of V

E

AU = QOAV = —AW
N——

work done

aE

. J
\\ , AS

9
\ AW =  ¢oE-AF
\Y% V +AV v
surface surface electric force

(i.e. Potential = V on the surface)

E, w5 -field component along path A5

@AV = —qo Es As

AV
EF, = ——
As
For infinitesimal As
dV
EF, = ——
ds
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All in all...

(I)E-ﬁeld component along any direction
is negative derivative of potential along same direction

(2) 1fd5 L F then AV = 0
(3) AV'is biggest/smallest if d3’| E

Generally for a potential V' (z,y, z) relation between E(x,y, z)andV s

oV oV oV
by = ——— b, = —— E, = ———
Ox Y oy 0z
4 J are partial derivatives
ox’ Oy’ 0z

For — V(z,y,2) everything Yy, 2 are treated like a constant

ox

and we only take derivative with respect fo ¥
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Example If V(z,y,2) = 2°y — 2

a_v _ Qxy
or
A
Oy
oV
= 1
0z
For other co-ordinate systems
@ Cylindrical: o 917
" Or
Vi(r,0,z) B, — 1 oV
/ r 060
B — oV

0z
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@ Spherical:

oV
By = ——-
Lo LoV
V(r.0,¢) ]
1 oV
Eo = Crsind 0P

Note . . .
Calculating |/ involves summation of scalars

which is easier than adding vecteors for calculating E-field

. To find E-field of a general charge system

we first calculate V' and then derive E from partial derivative
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Example Uniformly charged disk From potential calculations

From potential calculations

V = o \/R2 + 22 — |z|) for a point along z-axis
€0

For z>0, |z] =

oV o
8Z_2€O \/R2_|_22
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3.4 Equipotential Surfaces
Equipotential surface is a surface on which potential is constant

E - field lines = (AV — O)
N 1 +q

//\ > (r) = . — = cons
///q\\\\ v 47’(‘60— r t '
V\V\V\\/ / / / = T = cons

sj —> Equipotential surface are
V>V, >V, circles /spherical sur face
Note

(D A charge can move freely on an equipotential surface without any
work done

(2 Electric field lines must be perpendicular to equipotential surfaces

On an equipotential surface V' = constant (Why?)

= AV =0= E -dl = 0 wheredlis tangent to equipotential surface

- E must be perpendicular fo equipotential surfaces
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Example

Uniformly charged surface (infinite)

V>r,

Recall
o

V=V - —
TO 260’2‘

Potential at z = 0

Equipotential surface means

V = const = V) — i|z] = C
260

= |z| = constant
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Example .
Isolated spherical charged conductors

Recall
’[‘ (D E-field inside = ()
R @ charge distributed on outside of conductors
‘j' (i) Inside conductor

E =0 = AV = 0 everywhere in conductor
= V = constant everywhere in conductor

—> entire conductor is at same potential
(ii) Outside conductor

V = ¢ V(r)
dmegr
"." Spherically symmetric O
(Just like a point charge) e, R
BUT not true for conductors
of arbitrary shape O e > 1
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Example Connected conducting spheres
Two conductors connected can be seen as a single conductor

9,
g, conducting

“R, A .". Potential everywhere is identical
Potential of radius Ry sph v, = — 2
otential or radlus 1 Sphere m= 1 47T€()R1
Potential of radius [22 sphere m Vo = a2
dmeg Ro
Vi=1V
q1 q2 q1 Ry
> — = — — e ——
Ry Rs g2 Rs
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1 Q0 4zR’0, Ro,

475 R 4w g R £,
1 ¢ 4m’oc, ro

r

- drg, r  4Amgr £,

In a qualitative way, for a conductor of arbitrary
shape, the charge density distribution on its surface
is inverse proportional with its radius of curvature.

Tuesday, February 16, 21



[ROEJCARRYGETTIIMAGES)

M

Tuesday, February 16, 21

31




JULIAN EDELMAN
UNREAL CATCH |

Tuesday, February 16, 21




