
Chapter 1

Electric Charge and Coulomb’s Law

1.1 The Important Stuff

1.1.1 Electric Charge

In the latter part of the 18th century it was realized that any sample of matter has a property
which is as fundamental as its mass. This property is the electric charge of the sample.
Electric charge can be detected because it gives rise to electric forces. The reason that we
don’t see electric phenomena more often than we do is that electric charges come in two
types —positive and negative— and usually the two types occur in equal numbers so that
they add to give zero net charge. But when we can separate positive and negative charges
we observe electric forces on a large scale.

In the SI system, electric charge is measured in Coulombs. Throughout our study of
electromagnetism we will derive other electrical units based on the Coulomb and the units
already encountered in mechanics.

After decades of study of the electrical properties of matter, it was found that the fun-
damental charges in nature occur in integer multiples of the elementary charge e,

e = 1.602 × 10−19 C (1.1)

In discussing this property of charge we often say that electric charge is quantized.
In the atom, the nucleus has a charge which is a multiple of +e while the orbiting electrons

each have a charge of −e. The charge of the nucleus comes from the constituent protons,
each of which has a charge of +e; the neutrons in the nucleus have no charge.

1.1.2 Some Facts About Electric Charge

Electric charges can be separated by rubbing, as when you rub a plastic rod with some
roadkill; see Fig. 1.1. Then one of the objects will obtain a positive charge and the other
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Figure 1.1: Roadkill: Good for separating charges and mighty good eatin’.
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Figure 1.2: (a) Charges q1 and q2 have the same sign; the mutual force is repulsive. (b) Charges q1 and q2

have opposite signs; the mutual force is attractive.

a negative charge. This occurs because the negatively–charged electrons are removed from
one object and deposited on the other.

It has been found that in an isolated system the total amount of charge stays the same,
i.e. total electric charge is conserved .

It is also found that electric charges of the same sign (i.e. both positive or both negative)
will repel and electric charges of opposite sign (i.e. one positive and one negative) will attract .

In understanding the behavior of charged objects it is important to understand how
charges can move through them. To this end we distinguish objects as being either con-
ductors or insulators. Excess charge can move freely through a conductor and since like
charges repel one another, the charges on a charged conductor will generally move around
to space themselves out as much as possible.

In contrast, for insulators excess charge cannot move freely and generally will stay where
it is placed.

1.1.3 Coulomb’s Law

The force between two small (point) charges is directed along the line which joins the two
charges and is repulsive for two charges of the same sign, attractive for two charges of
the opposite sign. (See Fig. 1.2. It is proportional to the size of either one of the two
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charges; finally, it gets weaker as the distance between the charges increases. But the force
is not inversely proportional to the distance, it is inversely proportional to the square of the
distance.

The law for the magnitude of the electric force between two small charges q1 and q2

separated by a distance r is

F = k
|q1q2|

r2
where k = 8.99 × 109 N·m2

C2 (1.2)

This is usually called Coulomb’s law.
The constant k will come up often in our examples but later on it will be easier to work

with the constant ε0, which is related to k by

k =
1

4πε0

so that ε0 has the value

ε0 =
1

4πk
= 8.85 × 10−12 C2

N·m2 (1.3)

The electric force given by Coulomb’s law is similar to Newton’s law for the gravitational
force (from first semeseter) in that both are inverse–square laws; the force is inversely
proportional to the square of the distance between the particles.

If we plug some easy numbers into Eq. 1.2 we find that if two 1.0C charges are separated
by a meter, then each one experiences a repulsive force of about 9.0 × 109 N, which is an
enormous force. In this sense, 1C is a huge amount of charge; typically the charges which
one would encounter in real life are of the order of µC (10−6 C) or nC (10−9 C).

When a charge Q is in the vicinity of several other charges (q1, q2, etc.) the net force on
Q is found by adding up the individual forces from the other charges. Of course, this is a
vector sum of the forces.

1.2 Worked Examples

1.2.1 Electric Charge

1. How many electrons must you have to get a total charge of −1.0C? How many
moles of electrons is this?
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Since each electron has a charge of −1.6 × 10−19 C, the number of electrons required is

N =
(−1.0C)

(−1.6 × 10−19 C)
= 6.2 × 1018

A mole of any kind of particle is NAvo = 6.02 × 1023 (Avogadro’s number) of those
particles. Here we have 6.2 × 1018 electrons and that is

n =
N

NAvo
=

(6.2 × 1018)

(6.02 × 1023)
= 1.04 × 10−5 moles

2. A metal sphere has a charge of +8.0µC. What is the net charge after 6.0×1013

electrons have been placed on it? [CJ6 15-2]

The total charge of 6.0 × 1013 electrons is

Qelec = (6.0 × 1013)(−e) = (6.0 × 1013)(−1.60 × 10−19 C) = −9.6 × 10−6 C = −9.6µC

After this charge has been added to the metal sphere its total charge is

Qsph = +8.0µC − 9.6µC = −1.6µC

1.2.2 Coulomb’s Law

3. A charge of 4.5 × 10−9 C is located 3.2m from a charge of −2.8 × 10−9 C. Find
the electrostatic force exerted by one charge on another. [SF7 15-1]

This will be a force of attraction between the two charges since they are of opposite signs.
The magnitude of this force is given by Coulomb’s law, Eq. 1.2,

F = k
|q1q2|
r2

= (8.99 × 109 N·m2

C2 )
(4.5 × 10−9 C)(2.8 × 10−9 C)

(3.2m)2
= 1.1 × 10−8 N

The charges will attract one another with a force of magnitude 1.1 × 10−8 N.

4. An alpha particle (charge=+2.0e) is sent at high speed toward a gold nucleus
(charge=+79e). What is the electrical force acting on the alpha particle when it
is 2.0 × 10−14 m from the gold nucleus? [SF7 15-3]
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Here both particles are positively charged so there is a force of repulsion between them.
The magnitude of this force of repulsion is given by Coulomb’s law,

F = k
|q1q2|

r2
= k

(2.0)e(79.0)e

r2

= (8.99 × 109 N·m2

C2 )
(2.0)(79.0)(1.6 × 10−19 C)2

(2.0 × 10−14 m)2
= 91.1N

So the alpha particle experiences a (repulsive) force of 91N from the gold nucleus.

5. Two identical conducting spheres are placed with their centers 0.30m apart.
One is given a charge of 12 × 10−9 C, the other a charge of −18 × 10−9 C. (a) Find
the electrostatic force exerted on one sphere by the other. (b) The spheres are
connected by a conducting wire. Find the electrostatic force between the two
after equilibrium is reached. [SF7 15-9]

(a) Use Coulomb’s law to find the magnitude of the force, which in this case is attractive
since the spheres are oppositely charged:

F = k
|q1q2|

r2
= (8.99 × 109 N·m2

C2 )
(12 × 10−9 C)(18 × 10−9 C)

(0.30m)2
= 2.16 × 10−5 N

(b) When the (conducting) spheres are connect by a (thin!) conducting wire, the electric
charges are free to move between the spheres. The total charge on both spheres is

QTot = 12 × 10−9 C − 18 × 10−9 C = −6.0 × 10−9 C

and when this charge is free to move between the spheres it will attain an equilibrium when
both spheres have the same charge. So after the spheres are connected the charge of each is

Q = QTot/2 = −3.0 × 10−9 C

This is shown in Fig. 1.3.
With the new charges on the spheres, use Coulomb’s law to get the magnitude of the

force on each:

F = k
|q1q2|

r2
= (8.99 × 109 N·m2

C2 )
(3.0 × 10−9 C)(3.0 × 10−9 C)

(0.30m)2
= 8.99 × 10−7 N

and now the force is repulsive since both spheres are both negatively charged.

6. Three charges are arranged as shown in Fig. 1.4. Find the magnitude and
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Figure 1.3: (a) Conducting spheres are given different charges. (b) Charges on the spheres after being
joined by a conducting wire.
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Figure 1.4: Charges in Example 6

direction of the electrostatic force on the charge at the origin. [SF7 15-11]

Let’s call the 6.00nC charge q1 and the −3.00nC charge q2. (The charge at the origin is
Q = +5.00nC.)

The force from q1 is repulsive and points to the right. The force from q2 is attractive and
points downward, as shown in Fig. 1.5. We need to find the magnitudes of F1 and F2 and
then add those two force vectors.

From Coulomb’s law we get the magnitude of F1; since charge q1 is at a distance r1 =

,+%%#-(

#
!!

!"

!-12

Figure 1.5: Forces on Q in Example 6
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0.300m from Q,

F1 = k
|Qq1|
r2
1

= (8.99 × 109 N·m2

C2 )
(5.00 × 10−9 C)(6.00 × 10−9 C)

(0.300m)2
= 3.00 × 10−6 N

Likewise, the magnitude of F2 is

F2 = k
|Qq2|
r2
2

= (8.99 × 109 N·m2

C2 )
(5.00 × 10−9 C)(3.00 × 10−9 C)

(0.100m)2
= 1.35 × 10−5 N

Then the total force on Q has the components

Fx = −3.00 × 10−6 N Fy = −1.35 × 10−5 N

What is the magnitude and direction of this vector? Its magnitude is

F =
√

(−3.00 × 10−6 N)2 + (−1.35 × 10−5 N)2 = 1.38 × 10−5 N

and the direction we can find from

θ = tan−1 (−1.35 × 10−5)

(−3.00 × 10−6)
= 77.5◦ − 180◦ = −103◦

(Note, we subtract 180◦ from the simple answer because the direction of the force is in the
third quadrant.)

The net force on Q has magnitude 1.38 × 10−5 N and points at an angle of −103◦ from
the +x axis.

7. Two small metallic spheres, each of mass 0.20 g are suspended as pendulums
by light strings from a common point as shown in Fig. 1.6. The spheres are given
the same electric charge and it is found that they come to equilibrium when each
string is at an angle of 5.0◦ with the vertical. If each string is 30.0 cm long, what
is the magnitude of the charge on each sphere? [SF7 15-15]

From simple trig we can calculate the distance between the two spheres. If this distance
is x, then

x = 2(30.0m) sin 5.0◦ = 5.23 cm = 5.23 × 10−2 m
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Figure 1.6: Suspended charged spheres in Example 7
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Figure 1.7: Forces acting on a charged sphere in Example 7
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Now consider the forces acting on one of the spheres, say the one on the right. These are
shown in Fig. 1.7, where we also note (for reference) the location of other sphere. The right
sphere experiences a force of electric repulsion from the left sphere. The forces are the force
of gravity (mg, downward), the tension of the string (magnitude T ; it pulls at an angle 5.0◦

from the vertical) and the electric repulsive force. From Coulomb’s law, the magnitude of
the latter is

Felec = k
q2

x2

where q is the magnitude of the charge on each sphere.
The sphere is in equilibrium, so the forces must sum to zero. The vertical forces cancel

out, giving us:

T cos 5.0◦ = mg =⇒ T =
mg

cos 5.0◦
=

(2.00 × 10−4 kg)(9.80 m
s2 )

cos 5.0◦
= 1.97 × 10−3 N

The horizontal forces cancel out and this gives:

T sin 5.0◦ = Felec = k
q2

x2

which lets us solve for q:

q2 =
Tx2 sin 5.0◦

k
=

(1.97 × 10−3 N)(5.23 × 10−2)2 sin 5.0◦

(8.99 × 109 N·m2

C2 )
= 5.22 × 10−17 C2

so then
q = 7.2 × 10−9 C = 7.2nC


