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Problems set # 4 Physics 167 Solutions

1. Seven equal charges q are located at the corners of a cube of side s. Find the electric potential

at one corner, taking zero potential to be infinitely far away.

Solution: To compute the potential all you need to know is that there are 3 charges a distance s

away, 3 a distance s
√

2 away, and one charge a distance s
√

3 away. You find the potential due to each

charge separately, and add the results via superposition: V = q
4πε0s

(
3 + 3√

2
+ 1√

3

)
≈ 5.69 q

4πε0s
.

2. Four point charges are fixed at the corners of a square centered at the origin, as shown in

Fig. 1. The length of each side of the square is 2a. The charges are located as follows: +q is at

(−a,+a), +2q is at (+a,+a), −3q is at (+a,−a), and +6q is at (−a,−a). A fifth particle that has

a mass m and a charge +q is placed at the origin and released from rest. Find its speed when it is

a very far from the origin.

Solution: The diagram shows the four point charges fixed at the corners of the square and the

fifth charged particle that is released from rest at the origin. We can use conservation of energy to

relate the initial potential energy of the particle to its kinetic energy when it is at a great distance

from the origin and the electrostatic potential at the origin to express Ui. Use conservation of

energy to relate the initial potential energy of the particle to its kinetic energy whenit is at a great

distance from the origin: ∆K + ∆U = 0, or because Ki = Uf = 0, Kf − Ui = 0. Express the

initial potential energy of the particle to its charge and the electrostatic potential at the origin:

Ui = qV (0). Substitute for Kf and Ui to obtain: 1
2mv

2 − qV (0) = 0 ⇒ v =
√

2qV (0)/m. Express

the electrostatic potential at the origin: V (0) = q

4πε0
√

2a
(1 + 2 − 3 + 6) = 6q

4πε0
√

2a
. Substitute for

V (0) and simplify to obtain: v = q
√

6
√

2
4πε0ma

.

3. Five identical point charges +q are arranged in two different manners as shown in Fig. 2: in

once case as a face-centered square, in the other as a regular pentagon. Find the potential energy

of each system of charges, taking the zero of potential energy to be infinitely far away. Express

your answer in terms of a constant times the energy of two charges +q separated by a distance a.

Solution: Using the principle of superposition, we know that the potential energy of a system

of charges is just the sum of the potential energies for all the unique pairs of charges. The problem

is then reduced to figuring out how many different possible pairings of charges there are, and what

the energy of each pairing is. The potential energy for a single pair of charges, both of magnitude q,

separated by a distance d is just: PEpair = q2

4πε0d
. Since all of the charges are the same in both con-

figurations, all we need to do is figure out how many pairs there are in each situation, and for each

pair, how far apart the charges are. How many unique pairs of charges are there? There are not so

many that we couldn’t just list them by brute force - which we will do as a check - but we can also

calculate how many there are. In both configurations, we have 5 charges, and we want to choose all



possible groups of 2 charges that are not repetitions. So far as potential energy is concerned, the pair

(2, 1) is the same as (1, 2). Pairings like this are known as combinations, as opposed to permutations

where (1, 2) and (2, 1) are not the same. It is straightforward to see that the ways of choosing pairs

from five charges = 5!
2!(5−2)! = 5·4·3·2·1

2·1·3·2·1 = 10. So there are 10 unique ways to choose 2 charges out of

5. First, let’s consider the face-centered square configuration. In order to enumerate the possible

pairings, we should label the charges to keep them straight. Label the corner charges 1−4, and the

center charge 5 (it doesn’t matter which way you number the corners, just so long as 5 is the middle

charge). Then our possible pairings are: (1, 2) (1, 3) (1, 4) (1, 5) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5).

There are ten, just as we expect. In this configuration, there are only three different distances

that can separate a pair of charges: pairs on adjacent corners are a distance a
√

2 apart, a center-

corner pairing is a distance a apart, and a far corner-far corner pair is 2a apart. We can take our

list above, and sort it into pairs that have the same separation. We have four pairs of charges

a distance a apart, four that are a
√

2 apart, and two that are 2a apart. Write down the energy

for each type of pair listed in Table 1, multiply by the number of those pairs, and add the re-

sults together: PEsquare = 4(center− corner pair) + 2(far corner pair) + 4(adjacent corner pair) =
q2

4πε0a

(
4 + 1 + 4/

√
2
)
≈ 7.83 q2

4πε0a
. For the pentagon configuration, things are even easier. This

time, just pick one charge as “1”, and label the others from 2-5 in a clockwise or counter-clockwise

fashion. Since we still have 5 charges, there are still 10 pairings, and they are the same as the list

above. For the pentagon, however, there are only two distinct distances - either charges can be ad-

jacent, and thus a distance a apart, or they can be next-nearest neighbors. What is the next-nearest

neighbor distance? In a regular pentagon, each of the angles is 108◦, and in our case, each of the

sides has length a, as shown in Fig. 2. We can use the law of cosines to find the distance d between

next-nearest neighbors; d2 = a2 + a2 − 2a2 cos 108◦ = 2a2(1 − cos 10◦) ⇒ d = a
√

2− 2 cos 108◦ =

aφ ≈ 1.618a, where the number φ is known as the “Golden Ratio.” The distances a and d automat-

ically satisfy the golden ratio in a regular pentagon, d/a = φ. Given the nearest neighbor distance

in terms of a, we can then create a table of pairings for the pentagon; these are listed in Table 2.

Now once again we write down the energy for each type of pair, and multiply by the number

of pairs: PEpentagon = 5(energy of adjacent pair) + 5(energy of next− nearest neighbor pair) =

5q2

4πε0

(
1
a + 1

d

)
= 5q2

4πε0a

[
1 + 1√

2(1−cos 180◦)

]
≈ 8.09 q2

4πε0a
. So the energy of the pentagonal configura-

tion is higher, meaning it is less favorable than the square configuration. Neither one is energetically

favored though - since the energy is positive, it means that either configuration of charges is less

stable than just having all five charges infinitely far from each other. This makes sense - if all five

charges have the same sign, they don’t want to arrange next to one another, and thus these arrange-

ments cost energy to keep together. If we didn’t force the charges together in these patterns, the

positive energy tells us that they would fly apart given half a chance. For this reason, neither one

is a valid sort of crystal lattice, real crystals have equal numbers of positive and negative charges,

and are overall electrically neutral.

4. Consider a system of two charges shown in Fig. 3. Find the electric potential at an arbitrary

point on the x axis and make a plot of the electric potential as a function of x/a.

Solution The electric potential can be found by the superposition principle. At a point on the

x axis, we have V (x) = 1
4πε0

q
x−a + 1

4πε0

(−q)
|x+a| = q

4πε0

[
1
|x−a| − 1

|x+a|

]
. The above expression may be



rewritten as V (x)
V0

= 1
|x/a−1| − 1

|x/a+1| , where V0 = q
4πε0a

. The plot of the dimensionless electric

potential as a function of x/a is depicted in Fig. 3.

5. A point particle that has a charge of +11.1 nC is at the origin. (i) What is (are) the shapes

of the equipotential surfaces in the region around this charge? (ii) Assuming the potential to be

zero at r =∞, calculate the radii of the five surfaces that have potentials equal to 20.0 V, 40.0 V,

60.0 V, 80.0 V and 100.0 V, and sketch them to scale centered on the charge. (iii) Are these

surfaces equally spaced? Explain your answer. (iv) Estimate the electric field strength between

the 40.0-V and 60.0-V equipotential surfaces by dividing the difference between the two potentials

by the difference between the two radii. Compare this estimate to the exact value at the location

midway between these two surfaces.

Solution: (i) The equipotential surfaces are spheres centered on the charge. (ii) The electric

potential difference due to a point charge is given by Vb−Va = 1
4πε0

(
1
rb
− 1

ra

)
. Taking the potential

to be zero at ra =∞ yields: Vb−0 = 1
4πε0

1
rb
⇒ V = Q

4πε0r
⇒ r = Q

4πε0V
. Because Q = 1.11×10−8 C,

it follows that r = 8.988× 109 N ·m2/C2 1.11× 10−8 C 1
V . Now you can use the previous equation

to determine the values of r:

V [V] 20.0 40.0 60.0 80.0 100.0

r [m] 4.99 2.49 1.66 1.25 1.00

The equipotential surfaces are shown in cross-section in Fig. 4. (iii) No. The equipotential sur-

faces are closest together where the electric field strength is greatest. (iv) The average value

of the magnitude of the electric field between the 40.0-V and 60.0-V equipotential surfaces is

given by: E = −∆V
∆r = − 40 V−60 V

2.49 m−1.66 m ' 29 V
m . The exact value of the electric field at the lo-

cation midway between these two surfaces is given by E = Q
4πε0r2

, where r is the average of the

radii of the 40.0-V and 60.0-V equipotential surfaces. Substitute numerical values and evaluate

Eexact = 8.988×109 N·m2/C2 1.11×10−8 C
(1.66 m+2.49 m)2/4

' 23 V
m . The estimated value for E differs by about 21% from

the exact value.
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(d) Let q1 = q3 = 2.00 PC and q2  = q4 = �2.00 PC: 
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69 •• [SSM] Four point charges are fixed at the corners of a square 
centered at the origin. The length of each side of the square is 2a. The charges are 
located as follows: +q is at (–a, +a), +2q is at (+a, +a), –3q is at (+a, –a), and +6q 
is at (–a, –a). A fifth particle that has a mass m and a charge +q is placed at the 
origin and released from rest. Find its speed when it is a very far from the origin. 
 
Picture the Problem The diagram 
shows the four point charges fixed at 
the corners of the square and the fifth 
charged particle that is released from 
rest at the origin. We can use 
conservation of energy to relate the 
initial potential energy of the particle to 
its kinetic energy when it is at a great 
distance from the origin and the 
electrostatic potential at the origin to 
express Ui. 

a

a

a2

x

y
q q2

q3−q6

qm,

 

 
Use conservation of energy to relate 
the initial potential energy of the 
particle to its kinetic energy when it 
is at a great distance from the origin: 
 

0 '�' UK  
or, because Ki = Uf = 0, 

0if  �UK  

Express the initial potential energy 
of the particle to its charge and the 
electrostatic potential at the origin: 
 

� �0i qVU   

Substitute for Kf and Ui to obtain: 
 � � 002

2
1  � qVmv �

� �
m

qVv 02
  

 

Figure 1: Problem 2.

8. 15 points. Five identical point charges +q are arranged in two di�erent manners as shown below - in
once case as a face-centered square, in the other as a regular pentagon. Find the potential energy of each
system of charges, taking the zero of potential energy to be infinitely far away. Express your answer in
terms of a constant times the energy of two charges +q separated by a distance a.

a

+q

a

+q

Using the principle of superposition, we know that the potential energy of a system of charges is just the
sum of the potential energies for all the unique pairs of charges. The problem is then reduced to figuring
out how many di�erent possible pairings of charges there are, and what the energy of each pairing is.
The potential energy for a single pair of charges, both of magnitude q, separated by a distance d is just:

PEpair =
keq

2

d

Since all of the charges are the same in both configurations, all we need to do is figure out how many
pairs there are in each situation, and for each pair, how far apart the charges are.

How many unique pairs of charges are there? There are not so many that we couldn’t just list them
by brute force - which we will do as a check - but we can also calculate how many there are. In both
configurations, we have 10 charges, and we want to choose all possible groups of 2 charges that are not
repetitions. So far as potential energy is concerned, the pair (2, 1) is the same as (1, 2). Pairings like
this are known as combinations, as opposed to permutations where (1, 2) and (2, 1) are not the same.
Calculating the number of possible combinations is done like this:ii

ways of choosing pairs from five charges =

✓
5

2

◆
= 5C2 =

5!

2! (5 � 2)!
=

5 · 4 · 3 · 2 · 1

2 · 1 · 3 · 2 · 1
= 10

So there are 10 unique ways to choose 2 charges out of 5. First, let’s consider the face-centered square
lattice. In order to enumerate the possible pairings, we should label the charges to keep them straight.
Label the corner charges 1�4, and the center charge 5 (it doesn’t matter which way you number the
corners, just so long as 5 is the middle charge). Then our possible pairings are:

(1, 2) (1, 3) (1, 4) (1, 5)

(2, 3) (2, 3) (2, 5)

(3, 4) (3, 5)

(4, 5)

And there are ten, just as we expect. In this configuration, there are only three di�erent distances
that can separate a pair of charges: pairs on adjacent corners are a distance a

p
2 apart, a center-corner

pairing is a distance a apart, and a far corner-far corner pair is 2a apart. We can take our list above,
and sort it into pairs that have the same separation:

iiA nice discussion of combinations and permutations is here: http://www.themathpage.com/aPreCalc/

permutations-combinations.htm

Table 1: Charge pairings in the square lattice

#, pairing type separation pairs
4, center-corner a (1, 5) (2, 5) (3, 5) (4, 5)

4, adjacent corners a
p

2 (1, 4) (3, 4) (2, 3) (1, 2)
2, far corner 2a (1, 3) (2, 4)

And we are nearly done already. We have four pairs of charges a distance a apart, four that are a
p

2
apart, and two that are 2a apart. Write down the energy for each type of pair, multiply by the number
of those pairs, and add the results together:

PEsquare = 4 (center-corner pair) + 2 (far corner pair) + 4 (adjacent corner pair)

= 4


keq

2

a

�
+ 2


keq

2

2a

�
+ 4


keq

2

a
p

2

�

=
keq

2

a


4 + 1 +

4p
2

�

=
keq

2

a

h
5 + 2

p
2
i
⇡ 7.83

kq2

a

For the pentagon lattice, things are even easier. This time, just pick one charge as “1”, and label the
others from 2-5 in a clockwise or counter-clockwise fashion. Since we still have 5 charges, there are
still 10 pairings, and they are the same as the list above. For the pentagon, however, there are only
two distinct distances - either charges can be adjacent, and thus a distance a apart, or they can be
next-nearest neighbors. What is the next-nearest neighbor distance?

In a regular pentagon, each of the angles is 108�, and in our case, each of the sides has length a, as
shown below. We can use the law of cosines to find the distance d between next-nearest neighbors.

1
0
8
o

d
a

a

d2 = a2 + a2 � 2 · a · a cos 108� = 2a2 (1 � cos 108�)

=) d = a
p

2 � 2 cos 108� = a� ⇡ 1.618a

Here the number � is known as the “Golden Ratio.” The distances a and d automatically satisfy the
golden ratio in a regular pentagon, d/a=�. Given the nearest neighbor distance in terms of a, we can
then create a table of pairings for the pentagon (Table 2).

Table 2: Charge pairings in the pentagonal lattice

#, pairing type separation pairs
5, next-nearest neighbors d (1, 3) (1, 4) (2, 4) (2, 5) (3, 5)
5, adjacent a (1, 2) (2, 3) (3, 4) (4, 5) (5, 1)

Figure 2: Problem 3.
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For the pentagon lattice, things are even easier. This time, just pick one charge as “1”, and label the
others from 2-5 in a clockwise or counter-clockwise fashion. Since we still have 5 charges, there are
still 10 pairings, and they are the same as the list above. For the pentagon, however, there are only
two distinct distances - either charges can be adjacent, and thus a distance a apart, or they can be
next-nearest neighbors. What is the next-nearest neighbor distance?

In a regular pentagon, each of the angles is 108�, and in our case, each of the sides has length a, as
shown below. We can use the law of cosines to find the distance d between next-nearest neighbors.
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Here the number � is known as the “Golden Ratio.” The distances a and d automatically satisfy the
golden ratio in a regular pentagon, d/a=�. Given the nearest neighbor distance in terms of a, we can
then create a table of pairings for the pentagon (Table 2).

Table 2: Charge pairings in the pentagonal lattice

#, pairing type separation pairs
5, next-nearest neighbors d (1, 3) (1, 4) (2, 4) (2, 5) (3, 5)
5, adjacent a (1, 2) (2, 3) (3, 4) (4, 5) (5, 1)

3.8 Solved Problems  
 
3.8.1 Electric Potential Due to a System of Two Charges 
 
Consider a system of two charges shown in Figure 3.8.1.  
 

 
 

Figure 3.8.1 Electric dipole 
 

Find the electric potential at an arbitrary point on the x axis and make a plot. 
 
Solution: 
 
The electric potential can be found by the superposition principle. At a point on the x 
axis, we have 
 

 
0 0 0

1 1 ( ) 1( )
4 | | 4 | | 4 | | | |

q q qV x 1
x a x a x a xSH SH SH a

ª º�
 �  �« »� � � �¬ ¼

   

 
The above expression may be rewritten as 
 

 
0

( ) 1 1
| / 1| | / 1|

V x
V x a x a

 �
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where 0 / 4V q a0SH . The plot of the dimensionless electric potential as a function of x/a. 
is depicted in Figure 3.8.2. 
 

           Figure 3.8.2 
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Figure 3: The lectric dipole of problem 4.
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Because Q = +1.11 u 10–8 C: 
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Use equation (1) to complete the following table: 
 

V (V) 20.0 40.0 60.0 80.0 100.0
r (m) 4.99 2.49 1.66 1.25 1.00  

  
The equipotential surfaces are 
shown in cross-section to the 
right: 
 

20.0 V

40.0 V

60.0 V
80.0 V

100.0 V
point charge

 
(c) No. The equipotential surfaces are closest together where the electric field 
strength is greatest. 
 
(d) The average value of the 
magnitude of the electric field between 
the 40.0-V and 60.0-V equipotential 
surfaces is given by: 
 

rr
VE

ǻ
V 60V 40

ǻ
ǻ �

� �  

Drop perpendiculars to the r axis from 
40.0 V and 60.0 V to approximate the radii 
corresponding to each of these potential 
surfaces: 
 

m
V29

m7.1m4.2
V 60V 40

est  
�
�

�|E  

The exact value of the electric field at the location midway between these two 
surfaces is given by 2rkQE  , where r is the average of the radii of the 40.0-V 
and 60.0-V equipotential surfaces. Substitute numerical values and evaluate 
Eexact. 
 

Figure 4: Problem 5.


