## Lecture 8

## 1. Simplex method

The simplex method is an algorithm to find an optimal solution to LPs, consisting of steps in which we move from one feasible basis $B \subset\{1, \ldots, n\}$ to another $B^{\prime}=B \cup\{i\} \backslash\{j\}$ by adding an entering basic variable $x_{i}$ and removing a departing basic variable $x_{j}$, in such a way that we improve the value of the target function $c^{T} x$. Recall that $B \subset\{1, \ldots, n\},|B|=m$, is a feasible basis for an LP with feasible set in equational form

$$
S=\left\{x \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}
$$

where $A$ is an $m \times n$ matrix, if $A_{B}$ is invertible and the unique $x_{B} \in \mathbb{R}^{n}$ such that $A x_{B}=b$ and $x_{j}=0$ for all $j \notin B$ satisfies $x_{B} \geq 0$. Each feasible basis $B$ corresponds to a vertex of $S$, so the above corresponds to moving from one vertex to another.

As an example, let us consider

$$
A=\left(\begin{array}{lllll}
1 & 2 & 1 & 0 & 0 \\
3 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
4 \\
6 \\
2
\end{array}\right), \quad c=\binom{-1}{-1}
$$

so that the LP is given by

$$
\begin{array}{ccc}
\min -x_{1}-x_{2} \text { s.t. } & x_{1}+2 x_{2}+x_{3}=4 \\
& 3 x_{1}+x_{2}+x_{4}=6 \\
& x_{1}+x_{5}=2 \\
& x \geq 0
\end{array}
$$

An "obvious" feasible basis is $B=\{3,4,5\}$, with $x_{B}=(0,0,4,6,2)$. We represent this with the following tableau:

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{3}$ | 1 | 2 | 1 | 0 | 0 | 4 |
| $x_{4}$ | 3 | 1 | 0 | 1 | 0 | 6 |
| $x_{5}$ | 1 | 0 | 0 | 0 | 1 | 2 |
| $z$ | 1 | 1 | 0 | 0 | 0 | 0 |

The bottom row indicates that the target function $z=-x_{1}-x_{2}$ takes value 0 at the basic feasible solution $(0,0,4,6,2)$, which is written as $z+x_{1}+x_{2}=0$.

In order to select an entering variable, we pick the smallest index $i \notin B$ such that the coefficient in the $x_{i}$ column of the tableau is $\geq 0$; in this case, the entering variable is $x_{1}$.

Exercise 1. Show that by increasing $x_{1}$ from 0 to a positive value, we will decrease the target function.

To select the departing variable, we see how large can we make $x_{1}$ while staying in the feasible set. Namely, let us look at the constraints $x_{i} \geq 0, i \in B$, in terms of $x_{1}$ and see which would be violated first if we increase $x_{1}$ from 0 to a positive quantity (keeping in mind that $x_{2}=0$ since $x_{2}$ is not entering as a basic variable):

$$
\begin{aligned}
& 0 \leq x_{3}=4-x_{1}-2 x_{2} \\
& 0 \leq x_{4}=6-3 x_{1}-x_{2} \\
& 0 \leq x_{5}=2-x_{1}
\end{aligned}
$$

Since $x_{i} \geq 0$, we see from the above inequalities that $x_{1} \leq 4, x_{1} \leq 2$ and $x_{1} \leq 2$, respectively. These quantities are sometimes called $\theta$-ratios, and are obtained dividing the coefficients on the last column of the tableau by the coefficients in the column of the entering variable:

$$
\theta\left(x_{3}\right)=4, \quad \theta\left(x_{4}\right)=2, \quad \theta\left(x_{5}\right)=2 .
$$

The choice of departing variable is now arbitrary between $x_{4}$ and $x_{5}$, since their vanishing happens before $x_{3}$ vanishes, i.e., they have the smallest $\theta$-ratio $\theta\left(x_{4}\right)=\theta\left(x_{5}\right)=2$.

Let us proceed selecting $x_{4}$, so the new feasible basis is $B^{\prime}=\{1,3,5\}$. The corresponding tableau is obtained by row operations, so that the columns of $x_{i}$ with $i \in B$ are the columns of an $m \times m$ identity matrix:

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}$ | 1 | $\frac{1}{3}$ | 0 | $\frac{1}{3}$ | 0 | 2 |
| $x_{3}$ | 0 | $\frac{5}{3}$ | 1 | $-\frac{1}{3}$ | 0 | 2 |
| $x_{5}$ | 0 | $-\frac{1}{3}$ | 0 | $-\frac{1}{3}$ | 1 | 0 |
| $z$ | 0 | $\frac{2}{3}$ | 0 | $-\frac{1}{3}$ | 0 | -2 |

Note that the value of the target function decreased from $z=0$ to $z=-2$ at this new basic feasible solution $x=(2,0,2,0,0)$. However, we have not yet arrived at the minimum, since the coefficient of $x_{2}$ is still positive. So we take $x_{2}$ to be the new entering variable!

To select a departing variable, let us again check that the constraints $x_{i} \geq 0$ remain satisfied. From the last tableau, we have:

$$
\begin{aligned}
& 0 \leq x_{1}=2-\frac{1}{3} x_{2}-\frac{1}{3} x_{4} \\
& 0 \leq x_{3}=2-\frac{5}{3} x_{2}+\frac{1}{3} x_{4} \\
& 0 \leq x_{5}=\frac{1}{3} x_{2}+\frac{1}{3} x_{4}
\end{aligned}
$$

Keeping in mind that $x_{4}=0$ since $x_{4}$ is not entering as a basic variable, the first inequality gives $x_{2} \leq 6$ and the second gives $x_{2} \leq \frac{6}{5}$, while the last does not yield any constraint on $x_{2}$. In other words, we only consider the $\theta$-ratios that are $\geq 0$ and discard those of the form $0 / a$ if $a<0$, such as $0 /\left(-\frac{1}{3}\right)$, since they do not yield any constraints:

$$
\theta\left(x_{1}\right)=6, \quad \theta\left(x_{3}\right)=\frac{6}{5} .
$$

Thus, we set $x_{3}$ as the departing variable, enforcing the strongest constraint on how large $x_{2}$ can be when we increase it from 0 to a positive quantity (i.e., it has the smallest $\theta$-ratio).

Performing row operations, we arrive at the tableau for the feasible basis $B^{\prime \prime}=\{1,2,5\}$,

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $x_{4}$ | $x_{5}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{1}$ | 1 | 0 | $-\frac{1}{5}$ | $\frac{2}{5}$ | 0 | $\frac{8}{5}$ |
| $x_{2}$ | 0 | 1 | $\frac{3}{5}$ | $-\frac{1}{5}$ | 0 | $\frac{6}{5}$ |
| $x_{5}$ | 0 | 0 | $\frac{1}{5}$ | $-\frac{2}{5}$ | 1 | $\frac{2}{5}$ |
| $z$ | 0 | 0 | $-\frac{2}{5}$ | $-\frac{1}{5}$ | 0 | $-\frac{14}{5}$ |

The above tableau corresponds to an optimal solution $x=\left(\frac{8}{5}, \frac{6}{5}, 0,0, \frac{2}{5}\right)$ of the LP, where the target function achieves its minimum $z=-\frac{14}{5}$. Indeed, there are no positive entries in the target row. In other words, by the above tableau, the target function is given by:

$$
z=-\frac{14}{5}+\frac{2}{5} x_{3}+\frac{1}{5} x_{4},
$$

so increasing either $x_{3}$ or $x_{4}$ from the current value 0 would increase the value of the target function, of which we are seeking the minimum. We have thus found that minimum!

