Lecture 17

1. Review of Linear Algebra

Recall from last lecture that $\lambda \in \mathbb{R}$ is an eigenvalue for an $n \times n$ matrix A if the linear equation $A x=\lambda x$ has a nontrivial solution $x \neq 0$. Equivalently, eigenvalues are the roots of the characteristic polynomial $p(\lambda)=\operatorname{det}(\lambda \operatorname{Id}-A)$. The matrix A is diagonalizable if its eigenvectors form a basis of \mathbb{R}^{n}; equivalently, if there exists an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$. We will make frequent use of the following important algebraic results.

Theorem 1. If A is symmetric, that is, $A^{T}=A$, then A is orthogonally diagonalizable, that is, there exists a matrix P such that $P^{T} P=\operatorname{Id}$ and $A=P D P^{-1}=P D P^{T}$, where D is diagonal.
Theorem 2. The characteristic polynomial $p(\lambda)$ of an $n \times n$ matrix A satisfies

$$
p(\lambda)=\operatorname{det}(\lambda \operatorname{Id}-A)=\sum_{k=0}^{n}(-1)^{k} \operatorname{tr}\left(\wedge^{k} A\right) \lambda^{n-k}
$$

where $\operatorname{tr}\left(\wedge^{k} A\right)$ is the sum of all principal minor $\|^{母}$ of of size k.

2. Positive-Semidefinite matrices

A symmetric $n \times n$ matrix A is positive-semidefinite if for all $x \in \mathbb{R}^{n}$ we have $x^{T} A x \geq 0$, we write $A \succeq 0$ for short. Note that $q(x)=x^{T} A x$ is the quadratic form associated to A, so $A \succeq 0$ means that $q(x) \geq 0$ for all $x \in \mathbb{R}^{n}$. More generally, $A \succeq 0$ has several equivalent characterizations:

Theorem 3. If A is an $n \times n$ symmetric matrix of rank r, then the following are equivalent:
(1) A is positive-semidefinite, i.e., $A \succeq 0$;
(2) All eigenvalues of A are nonnegative;
(3) There exists a $r \times n$ matrix Q such that ${ }^{2} A=Q^{T} Q$;
(4) There exists a symmetric and positive-definite $n \times n$ matri $\|^{3} R$ such that $A=R^{2}$;
(5) All principal minors of A are nonnegative;
(6) All principal minors of A of size at most r are nonnegative.

Exercise 1. Use Theorem 1 to prove the equivalence (1) \Longleftrightarrow (2).
The equivalence $(1) \Longleftrightarrow(5)$ is very useful for computations, and is known as Sylvester's criterion.
Similarly, A is called positive-definite, written $A \succ 0$, if for all $x \in \mathbb{R}^{n} \backslash\{0\}$, we have $x^{T} A x>0$. There is an analogous version of Theorem 3 giving equivalent characterizations of $A \succ 0$, a notable simplification is that in (5) and (6) it suffices to have that leading principal minors are positive, i.e., those consisting of rows and columns $\{1, \ldots, k\}$ for all $1 \leq k \leq n$.

Exercise 2. Use Sylvester's criterion to determine if the following matrices are positive-semidefinite. If so, check if they are positive-definite.

$$
A=\left(\begin{array}{ll}
3 & 4 \\
4 & 3
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad C=\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & 2 & -1 & 2 \\
1 & -1 & 3 & 1 \\
0 & 2 & 1 & 4
\end{array}\right), \quad D=\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right) .
$$

Exercise 3. Describe geometrically the set $S=\left\{(x, y, z) \in \mathbb{R}^{3}:\left(\begin{array}{ll}x & y \\ y & z\end{array}\right) \succeq 0\right\}$.

[^0]Generalizing the example above, note that the set $\mathcal{C}_{P S D}:=\left\{X \in \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right): X \succeq 0\right\}$ of positive-semidefinite $n \times n$ matrices form a convex cone in the vector space $\operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ of symmetric $n \times n$ matrices. The natural inner product in $\operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ is given by $\langle X, Y\rangle=\operatorname{tr} X Y$; so, given $A \in \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ and $b \in \mathbb{R}$, the affine equation $\langle A, X\rangle=b$ determines a hyperplane in $\operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$.

A subset $S \subset \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ is a spectrahedron if it is of the form

$$
S=\left\{X \in \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right):\left\langle A_{i}, X\right\rangle=b_{i}, 1 \leq i \leq m, \text { and } X \succeq 0\right\},
$$

for some $A_{i} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right), 1 \leq i \leq m$. Equivalently, S is a spectrahedron if it can be described by a linear matrix inequality, that is,

$$
S=\left\{x \in \mathbb{R}^{d}: F_{0}+x_{1} F_{1}+\cdots+x_{d} F_{d} \succeq 0\right\}
$$

where $F_{j} \in \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right), 0 \leq j \leq d$.
Exercise 4. Prove that spectrahedra are convex.
Exercise 5. Prove that polyhedra are spectrahedra.
Exercise 6. Describe geometrically the following spectrahedra in \mathbb{R}^{2} :
a) $S=\left\{(x, y) \in \mathbb{R}^{2}:\left(\begin{array}{cc}1+x & y \\ y & 1-x\end{array}\right) \succeq 0\right\}$,
b) $S=\left\{(x, y) \in \mathbb{R}^{2}:\left(\begin{array}{cccc}1+x & & & \\ & 1-x & & \\ & & 1+y & \\ & & & 1-y\end{array}\right) \succeq 0\right\}$,
c) $S=\left\{(x, y) \in \mathbb{R}^{2}:\left(\begin{array}{lll}1 & x & y \\ x & 1 & x \\ y & x & 1\end{array}\right) \succeq 0\right\}$.

[^0]: ${ }^{1}$ Recall that a principal minor of A of size k is the determinant of a submatrix of A obtained by selecting rows $\left\{i_{1}, \ldots, i_{k}\right\}$ and columns $\left\{i_{1}, \ldots, i_{k}\right\}$.
 ${ }^{2}$ This is often called the Cholesky factorization.
 ${ }^{3}$ We often write $R=\sqrt{A}$.

