Day #	Date	Topic	Group timeline
1	м 8/28	Introduction, work on example of LP	Start forming groups
2	W 8/30	Worked examples (mathematically formulating LP from words)	Groups are formed
	м 9/4	Labor day	Project 1 sent out
3	W 9/6	Geometric sol to 2D/3D LP, matrix notation, polyhedra, vertices	
4	м 9/11	Group presentations (Project #1)	Deliver report on BB
5	W 9/13	Convex geometry: convexity, half-spaces, polyhedra	Regroup?
6	м 9/18	Extremal points, convex hull, finding all vertices of polyhedra	
7	₩ 9/20	Slack variables, equational formulation of LP, basic feasible sol	
	M 9/25	(no classes)	
8	W 9/27	Simplex method I: intuitive approach	
9	M 10/2	Simplex method II: algorithm	Project 2 sent out
10	W 10/4	Simplex method (example), Degeneracy and cycling	
11	T 10/10	Artificial variables and two-phase method	
12	W 10/11	Two-phase method complete example	
13	м 10/16	Group presentations (Project #2)	Deliver report on BB
14	W 10/18	Applications of LP: max flow, currency exchange arbitrage	Regroup?
15	м 10/23	Applications of LP: optimal classifiers, largest ball in polygon	
16	W 10/25	Dual linear program and duality theorem	
17	м 10/30	Dual linear program examples, min cut	
18	W 11/1	Review of Linear Algebra: eigenvalues, diagonalization	
19	м 11/6	Positive semidefinite matrices, Sylvester's criterion	
20	W 11/8	Spectrahedra and equivalent formulations	
21	м 11/13	LEHMAN MATH COLLOQUIUM	
22	W 11/15	Semidefinite programs	Project 3 sent out
23	M 11/20	Spectrahedral shadows	
	W 11/22	Thanksgiving	
24	M 11/27	Semialgebraic sets, Quantifier Elimination	
25	W 11/29	Example of optimization problem on 2d spectrahedron	
26	M 12/4	Polynomials: nonnegative v. sum of squares	
27	W 12/6	Group presentations (Project #3)	Deliver report on BB
28	м 12/11	Dual SDP, duality theorem, survey of applications of SDP	

м 12/18 Final group presentation (Project #4)

Linear programming

Proj #1: LP, 2 var, standard form, solve geom

Proj #2: LP, 7 var, with slack/artificial, simplex

Convex Algebraic Geometry and Semidefinite programming

Proj #3: SDP, 3x3 matrix, dual, software implement.

Proj #4: mix LP/SDP, software implementation

Deliver report on BB