Practice Problems for the Final Exam

1. Find all solutions to the system of linear equations

$$
\left\{\begin{array}{c}
x_{1}+4 x_{2}+3 x_{3}+2 x_{4}=0 \\
8 x_{1}+16 x_{2}+4 x_{3}+4 x_{4}=0 \\
6 x_{1}+20 x_{2}+5 x_{3}+17 x_{4}=0
\end{array}\right.
$$

2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear map, such that $T(1,2)=(3,2,4)$ and $T(2,7)=(3,-1,1)$.
(a) Find $T(0,1)$.
(b) What is the matrix that represents T in the canonical basis?
(c) What are the dimensions of the subspaces $\operatorname{ker} T$ and $\operatorname{Im} T$?
3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $T(x, y, z)=(z, x+y, x-y)$.
(a) Find the matrix that represents T in the canonical basis.
(b) Is T invertible? If so, find a formula for its inverse.
4. Write a basis for the subspace of \mathbb{R}^{8} consisting of solutions to the following system:

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=0 \\
x_{2}+x_{3}=0 \\
x_{3}+x_{4}=0 \\
x_{4}+x_{5}=0 \\
x_{5}+x_{6}=0 \\
x_{6}+x_{7}=0 \\
x_{7}+x_{8}=0
\end{array}\right.
$$

5. Decide if each of the following sets is linearly dependent or linearly independent:
(a) $\{(4,6),(1,1),(3,7)\}$ in \mathbb{R}^{2}
(b) $\{(1,-1),(1,1)\}$ in \mathbb{R}^{2}
(c) $\{(0,1,1),(1,0,1),(1,1,0)\}$ in \mathbb{R}^{3}
(d) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}2 & 2 \\ 2 & 2\end{array}\right)\right\}$ in $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$
(e) $\left\{t^{2}+5 t, t-1, t, 7\right\}$ in $\mathbb{R}[t]_{3}$
6. Find bases for $\operatorname{ker} T$ and ImT for each of the following linear transformations:
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=(x+y, 2 x+2 y)$
(b) $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}, T(x, y, z, w)=(x, w)$
(c) $T: \mathbb{R} \rightarrow \mathbb{R}^{2}, T(x)=(x, 5 x)$
(d) $T: \mathbb{R}[t]_{2} \rightarrow \mathbb{R}[t]_{3}, T(p(t))=\int p(t) \mathrm{d} t$
(e) $T: \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}, T(A)=\left(a_{11}, a_{22}\right)$, where $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$
7. Compute the determinant of the matrices $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right)$ and $B=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & -3 & 0 \\ 5 & 4 & 4\end{array}\right)$.
8. Suppose that A is an invertible matrix. Is its transpose A^{T} also invertible? Justify.
9. Suppose that A is symmetric. Is A invertible? Justify.
10. Suppose that A and B are invertible. Is $A^{2} B^{2}$ invertible? What about $A B A B$?
11. Sketch the image of the checkerboard below under each of linear transformation:

(a) $T=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
(b) $T=\left(\begin{array}{ll}3 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
(c) $T=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$
(d) $T=\left(\begin{array}{cc}1 & 0 \\ \frac{1}{2} & 1\end{array}\right)$
12. Find the dimension of the subspace of \mathbb{R}^{5} given by vectors of the form

$$
(a-3 b+c, 2 a-6 b-2 c, 3 a-9 b+c, c, 2 a-6 b+6 c)
$$

13. Find the eigenvalues of the following matrices
(a) $\left(\begin{array}{ll}4 & 3 \\ 3 & 4\end{array}\right)$
(b) $\left(\begin{array}{ll}0 & 1 \\ 1 & 4\end{array}\right)$
(c) $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$
14. Find A^{100} where $A=\left(\begin{array}{ll}4 & 3 \\ 3 & 4\end{array}\right)$.
15. Suppose that A is symmetric. Is A^{2} symmetric? Justify.
16. Find an orthonormal basis of the subspace $\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\}$.
17. Find the equation of the 1 -dimensional subspace of \mathbb{R}^{2} orthogonal to the line $y=m x+b$.
18. What are all the possible lengths of the line segments joining vertices of a cube in \mathbb{R}^{3} whose side lenght is 1 ? (Bonus: What about for a "hypercube" in \mathbb{R}^{n} ?)
19. If A is diagonalizable, prove that $A+c \operatorname{Id}$ is also diagonalizable for any $c \in \mathbb{R}$.
20. Find a least-squares solution to $A x=b$ where $A=\left(\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right)$ and $b=\left(\begin{array}{l}3 \\ 7 \\ 2\end{array}\right)$.
21. Find a change of variables $\left(x_{1}, x_{2}\right) \mapsto\left(y_{1}, y_{2}\right)$ which eliminates the cross-terms in the quadratic form $Q\left(x_{1}, x_{2}\right)=4 x_{1}^{2}+8 x_{1} x_{2}+10 x_{2}^{2}$.
22. Does the matrix $\left(\begin{array}{ccc}4 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & -1 & 3\end{array}\right)$ admit an orthonormal basis of eigenvectors? Justify.
23. Suppose that $p(t), q(t)$, and $r(t)$ are elements of $\mathbb{R}[t]_{7}$ satisfying the following:

$$
\langle p, p\rangle=4,\langle p, q\rangle=0,\langle p, r\rangle=8,\langle q, q\rangle=1,\langle q, r\rangle=0,\langle r, r\rangle=50 .
$$

(a) Compute $\langle p, q+r\rangle$.
(b) Compute $\|p+r\|$ and $\|q+r\|$.
(c) Find the orthogonal projection of r onto $\operatorname{span}\{p, q\}$. (Write your answer as a linear combination of p and q).
(d) Find an orthonormal basis of $\operatorname{span}\{p, q, r\}$.
24. Find the singular values of the matrices $\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right)$ and $\left(\begin{array}{ll}1 & 0 \\ 0 & 4 \\ 2 & 2\end{array}\right)$.

