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Microscopic Origin of Dissipation

1 Introduction

One can read in textbooks on classical mechanics that dissipation that is usually taken into account by
adding “phenomenological” damping terms in the equations of motion such as

mr̈+2mγṙ +
∂U

∂r
= 0

is itself of a non-mechanical origin because it is caused by the coupling of the system to the environment
that is described statistically by temperature and other thermodynamic parameters. The origin of these
statements goes back to the years when it was impossible to solve equations of motion for systems with a
macroscopic number of degrees of freedom. However, with the growth of computing power solving equations
of motion for large systems has become a matter of fact, and a new area of physics, computer simulations,
has emerged. Of course, simulating real macroscopic systems with an Avogadro number NA ∼ 1023 particles
is still prohibitive. Nevertheless, it turns out that using only N ∼ 103−105 particles is sufficient to describe
macroscopic properties of many systems.

Already in the IX century Ludwig Boltzmann and other researchers argued about apparent irreversibility
and dissipation in conservative many-body systems that obey deterministic equations of motion. Boltz-
mann himself obtained his famous kinetic equation under the assumption of the “molecular chaos” that
introduced irreversibility “by hand”. Some physicists desagreed with this saying that the true equations are
reversible and after making the Poincaré cycle the system will return into the initial state, that is a rigorous
mathematical result. Practically, however, for macroscopic systems the Poincaré cycle (the recurrence time)
is longer than the age of the Universe, so that a gas initially held in one half of the container will never
completely return into this half after the separating wall is removed.

Still, some of the XX-century physicists believed that going beyond the deterministic mechanics is needed
to describe irreversibility and dissipation. However, computer simulations on conservative mechanical sys-
tems show that the recurrence phenomena, still visible for moderate-size systems, quickly disappear as the
size is increased, so that practically irreversible relaxation is observed. This means that dissipation is in fact
a mechanical phenomenon.

2 The model

In addition to computer simulations, it was found that for some models irreversibility can be described
analytically. One of these models is a model of an oscillator weakly coupled to many harmonic oscillators
with widely distributed frequencies:
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Ẋ2 − ω2

0X
2
)

+
N∑

i=1

mi

2

(
ẋ2
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The last term of this expression is the linear (more precisely, bilinear) coupling of the “central” oscillator x
to the “environment” or “bath” of many oscillators xi . The equations of motion for this model have the
form

m0

(
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Searching for the solution in the form

X(t) = a cos (Ωt− Φ) , xi(t) = ai cos (Ωt− ϕi) (3)

one obtains the system of linear equations
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that defines the eigenfrequencies and normal modes of the system. It is easy to obtain the secular equation.
Expressing ai through a using the second line, inserting the result into the first equation, and dividing the
result by a one obtains
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3 Analytical solution

This is, in fact, a (N + 1)th order algebraic equation for Ω2 and it can be solved numerically, as well as the
whole eigenvalue problem of Eq. (4). However, in the case of weak coupling Ci one can find the correction
to the frequency of the central oscillator perturbatively. Denoting this perturbed frequency Ω ⇒ ω̃0, and
replacing Ω → ω0 in the denominator, for the latter one obtains
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Of course, this exression makes sense only if ω0 is not too close to one of the frequencies ωi, otherwise this
perturbation theory becomes invalid. This condition, however, becomes irrelevant if the number of the bath
oscillators tends to infinity so that one can replace summation by integration. The latter is a crucial step
that introduces irreversibility on the analytical level. With the function
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that is related to the density of bath states
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one can rewrite Eq. (6) as
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One can easily see that this expression is still equivalent to Eq. (6) since one can step back from Eq. (9)
to Eq. (6) using Eq. (7). The really crucial step is to consider now λ(ω) as a continuous function of ω
rather than as a collection of δ-functions. Then Eq. (9) becomes a true integral that depends on how the
singularity at ω = ω0 is treated. Interpreting the intergal in Eq. (9) as a principal-value integral
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(V.P. = Valeur Principal) gives a small real correction to ω0 that is not interesting. A striking feature of
the integral in Eq. (9) is, however, that it is unstable with respect to adding a vanishingly small imaginary
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constant to ω, that is, ω → ω + iδ with δ → 0. Doing this is equivalent to shifting the integration contour up
or down from the real axis into the complex plane that results in avoiding the singularity. With iδ added,
Eq. (9) takes the form
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Note that we kept iδ only in the singular factor with ω − ω0, in all other places iδ is irrelevant. Then using
the formula

1
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(the second term stemming from making a half-circle around the pole at ω = ω0 in the complex plane) one
obtains
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where we have dropped the small real correction to the frequency and sign (δ) is defined as

sign (δ) =


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

−1, δ < 0
0, δ = 0
1 δ > 0.

The imaginary term in Eq. (10) cannot simply be ignored as it does not vanish in the limit δ → 0. But
this term requires interpretation. What does a complex frequency mean? To clarify this, one can rewrite
Eq. (3) as

X(t) = a Re ei(Ω̃t−Φ), xi(t) = ai Re ei(Ω̃t−ϕi). (11)

For a complex Ω̃ in the form
Ω̃ = Ω + iΓ

one obtains
X(t) = ae−Γt cos (Ωt− Φ) , xi(t) = aie

−Γt cos (Ωt− ϕi)

that describes damped oscillations. Thus, with the convention of Eq. (11), the imaginary part of Ω should
be positive, to avoid physically inacceptable exponentially growing solution. Now it becomes clear that
formal replacing ω → ω + iδ with δ → +0 in Eq. (9) can be interpreted as taking into account a vanishingly
small damping of the bath oscillators. This does not contradict anything since, as just said, the damping of
bath oscillators tends to zero and we do not change the initial model. On the other hand, taking δ < 0 for
the bath oscillators would be physically inacceptable since this would result in a solution slowly diverging
at large times. The vanishingly small damping of the bath oscillators makes, however, a big effect on the
central oscillator that acquires a finite damping because of the coupling to the environment. From Eq. (10)
with δ > 0 one obtains
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Now one can forget about the bath oscillators and just use the damped equation of motion

Ẍ + 2Γ0Ẋ + ω2
0X = 0 (13)
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for the central oscillator. Searching for the solution in the form

X(t) ∼ Re eiΩ̃t

one obtains the secular equation
−Ω̃2 + 2iΓ0Ω̃ + ω2

0 = 0.

For small damping Γ0 ¿ ω0 the complex eigenfrequency is approximately
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The final solution taking into account the initial conditions at t = 0 has the form
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[
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ω0

]
e−Γ0t. (14)

The energy of the central oscillator is given by
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and we haven’t differentiated the slow function e−Γ0t.
The results obtained explain that Eq. (13) that is sometimes interpreted as a “phenomenological” equation

with a non-mechanical damping term 2Γ0Ẋ added by hand can be in fact obtained from a purely mechanical
and conservative model.

4 Numerical solution

To produce a numerical solution of the problem, one can write Eq. (2) in the vectorized form

M · Ẍ + K ·X = 0. (16)

where X is the original-coordinate vector, X =(X,x1, x2, . . . xN ) , M is a diagonal matrix and K contains
diagonal and nondiagonal terms:

Mij = miδij , i = 0, 1, . . . , N

Kii = miω
2
i , i = 0, 1, . . . , N

K0i = Ki0 = Ci, i = 1, . . . , N.

The eigenvalue problem, Eq. (4), reads
(
−Ω2M + K

)
· a = 0. (17)

There are N +1 eigenvalues Ω2
α and eigenvectors aα, α = 0, 1, . . . , N that satisfy the orthogonality condition

aT
α ·M · aβ = δαβ

(aβ are columns and aT
α are rows). One can stack all aα into the (N + 1) × (N + 1) matrix A that is

orthogonal with respect to M:
AT ·M ·A = I, (18)
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where I is a unit matrix, Iαβ = δαβ . From Eq. (17) follows

aT
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(
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)
. (19)

Further one can introduce the normal-coordinate vector ζ by

X = A · ζ, XT =(A · ζ)T = ζT ·AT . (20)

These equations can be resolved for ζ and ζα:
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Inserting X = A · ζ into Eq. (16), multiplying by AT from left, and using Eqs. (18) and (19), one obtains
the equation of motion for the normal coordinates in the simple form
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The solution of these equations is
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This resut also can be brought in a vectorized form (excercize). Finally, from Eq. (20) one obtains
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In particular, if in the initial state only the central oscillator X ≡ x0 was in a general state, whereas the
bath oscillators were in their ground states, for the central oscillator one obtains
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Let us now calculate the energy of the central oscillator. Using
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sin (Ωβt)
Ωβ

]}

5



=
m

2

N∑

α,β=0

a0α

(
A−1

)
α0

a0β

(
A−1

)
β0

×
{
X2(0)

[
ΩαΩβ sin (Ωαt) sin (Ωβt) + ω2

0 cos (Ωαt) cos (Ωβt)
]
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Analytically this expression has nothing in common with Eq. (15) that shows a slow relaxation of the energy.
Still, for N sufficiently large both expression numerically coincide. In Eq. (22), decreasing of E(t) is due
to many sinusoidal functions with different frequencies that go out of phase and interfere destructively with
increasing time.

Numerical simulations can be done, for instance, with the equidistant spectrum of bath oscillators
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i− 1
N − 1

ωmax, ωmin < ω0 < ωmax,

so that ω1 = ωmin and ωN = ωmax, and one can set all Ci and mi equal to each other:
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N
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Note that the second form of this expression requires only ∼ N operations to perform and is much faster to
compute. It is not difficult to program Eq. (23) in Wolfram Mathematica.

On the other hand, Eq. (12) becomes
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Since for this model the density of states of the bath oscillators is
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dωρ(ω) = N), from Eq. (15) one finally obtains
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with m = 1. Eqs. (23) and (24) are numerically compared with each other in the figure below for different
values of N. One can see that there is a recurrence phenomenon for finite N but as N grows the recurrence
time becomes longer, so that the recurrence goes out of the window. For times smaller than the recurrence
time, there is a very good agreement between the analytical and numerical results.
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