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Problems set # 11 Physics 303 November 18, 2014

1. The partition function of classical particles in 3 dimensions is defined as

Zclass =

∫
d3p

∫
d3r exp[−βE(p, r)],

where E(p, r) is the particles energy. Note that this expression has the unit of (momentum ×
distance)3, unlike the quantum partition function that is dimensionless. Define the density of

states of a free classical particle in a box of volume V . By comparing it with the density of states

for a quantum particle in a rigid box, find the missing factor in Zclass that would make the classical

partition function match the quantum one. This will define a quantum-mechanical “cell” in the

phase space of a classical particle. Show that this quantum-mechanical aspect does not contribute

into the internal energy and heat capacity of the classical particles.

Solution: The energy of the particle consists of kinetic and potential energy E(p, r) = p2

2m+V (r,

so that the classical partition function factorizes Zclass =
∫
d3p e−βp

2/(2m)
∫
d3r e−βV (r)). For free

particles there is no potential energy, and Zclass for particles in a rigid box of volume V becomes

Zclass = V
∫
d3p e−βp

2/(2m). Choosing the kineti energy ε = p2/(2m) as the integration variable,

you can rewrite this in the form Zclass =
∫∞

0 dε ρclass(ε) e
−βε, where ρclass(ε) = 2πV (2m)3/2√ε.

The quantum mechanical partition function for free particles has the same form with ρ(ε) =

V
(2π)2

(
2m
h̄2

)3/2√
ε. The two density of states are related by ρ(ε) = ρclass(ε)

(2πh̄)3
, which defines the

missing factor in the previous definition of the classical partition function. Correcting Zclass as

Zclass =
∫ d3p d3r

(2πh̄)3
exp[−βE(E, r], you obtain the dimensionless quantity that coincides with the

classical limit of the quatum partition function Z. This expression can also be used in the presence

of a potential energy. The interpretation of the above is the following. The (x, px) projection of the

phase space of the particle is discretized into cells ∆x∆px ∼ 2πh̄ = h, and equivalent expressions

for the directions y and z. The cells have quantum origin and are related to the Heisenberg’s

uncertainty principle, stating that the product of uncertainties of measuring x and px of a quantum

particle is of order h. The number of quantum cells in a limited region of x and px is limited

and it defines the number of different states in this region. It is impossible to have more different

states because there is no way to distuingush states that are too close both in x and in px by any

measurement. Similarly, quantum cells can be introduced in many-particle problems and in prob-

lems with rotational degrees of freedom. The concept of a quantum cell is na external element in

classical statistical physics. Statistical averages of most physical quantities (except for the entropy

and related functions) are insensitive to the quantization of the phase space of the system, because

the correction factor introduced above cancels.

2. Using the distribution function

f(p, r) =
1

Zclass
exp[−βE(p, r)]



for classical particles with gravity, find the dependence of particle’s concentration n and pressure

P as the function of the height. Set the minimal height (the earth level) to zero. Calculate the

heat capacity of this system and compare it with the one for free particles.

Solution: The energy of a particle has the form E = p2

2m +mgz The classical partition function

factorizes Zclass =
∫
d3p

∫
d3r exp[−βE(p, r)] = ZkineticZpotential, where Zkinetic =

∫
d3p e−βp

2/(2m)

and Zpotential =
∫
d3re−βmgz. The kinetic part of the classical partition function can be calcu-

lated as Zkinetic =
[∫+∞
−∞ dpxe

−βp2x/(2m)
]3

= (2πmkT )3/2. Assuming that the particles are con-

tained to a vertical cylinder of cross section S, for the potential partition function you obtain

Zpotential = S
∫∞

0 dze−βmgz = SkT
mg . Therefore, Zclass = S

g (2π)3/2m1/2(kT )5/2. Now, suppose

the are N particles in the system. The number of particles in the element of phase space is

dN = Nfdpxdpydpzdxdydz, where f is the distribution function. The concentration of particles

is defined as n =
∫
d3p dN

dxdydz = N
∫
d3pf. Since f and Zclass factorize, the integrals over mo-

mentum cancel out and you obtain n = N
Zpotential

e−βmgz. You can verify that integration this

over the volumes yields the identity N = N . Using the expression for Zpotential you obtain

n = mgN
SkT e

−βmgz, that is n exponetially decreases with height. For the pressure you obtain the

equation of state of the ideal gas P = kkT = mgN
S e−βmgz. The average internal energy is given

by U = −N ∂ lnZclass
∂β = −N ∂ lnβ−5/2

∂β = 5
2
N
β = 5

2NkT . The heat capacity is C = ∂U
∂T = 5

2Nk. This

result might be unexpected. The three translational degrees of freedom contribute 3
2Nk to the

heat capacity. In addition, there is a potenatil energy for the motion in the vertical direction. Its

contribution is Nk instead of the expected 1
2Nk, as it would be the case or a vibrational degree

of freedom. The reason for a different result is that the theorem of equidistribution of the energy

over degrees of freedom is valid in cases where the energy is a quadratic function of the momenta

and the deviations from the equilibrium position (see problem 4). For the problem at hand, the

potential energy is linear rather than a quadratic function of z.

3. Consider two interacting Ising spins, i.e. a model of two coupled spins with the Hamiltonian

Ĥ = −gµBB(S1,z + S2,z)− JS1,zS2,z,

where B is the external magnetic field and J is the so-called exchange interaction, ferromagnetic

for J > 0 and antiferromagnetic for J < 0. The energy levels of this system are given by

εm1m2 = −gµBB(m1 +m2)− Jm1m2,

where the quantum numbers take the values −S ≤ m1,m2 ≤ S. Write down the expression for the

partition function of the system. Can it be calculated analytically for a general S? If not, perform

the calculation for S = 1/2. Calculate the internal energy, heat capacity, magnetization induced

by the magnetic field, and the magnetic susceptibility (in the zero field limit). Analyze ferro- and

antiferromagnetic cases.

Soultion: The partition function of the system is given by Z =
∑S
m1,m2=−S e

−βεm1m2 . For a

general spin you can perform analytically one summation. You can use the results for a single

spin in a magnetic field and with h ≡ gµBB write ZS =
∑S
m1=−S e

βhm1
∑S
m2=−S e

β(h+Jm1)m2 =



∑S
m=−S e

βhm sinh[(S+1/2)β(h+Jm)]
sinh[β(h+Jm)/2] . The remaining sum most probably cannot be calculated analyt-

ically. For S = 1/2 the partition function simplifies to Z1/2 =
∑1/2
m=−1/2 e

βhm2 cosh
[
β(h+Jm)

2

]
,

that is Z1/2 = 2
{
eβh/2 cosh

[
β(h+J/2)

2

]
+ e−βh/2 cosh

[
β(h−J/2)

2

]}
. This expression can be simpli-

fied to Z1/2 = 2
[
eβJ/4 cosh(βh) + e−βJ/4

]
. In the zero field limit the result further simplifies to

Z1/2 = 4 cosh(βJ/4). The internal energy in the zero field limit is U = −N ∂ lnZ
∂β = −NJ

4 tanh
(
βJ
4

)
,

where N is the number of two-spin systems. In the limit of low temperatures the hyperbolic tan-

gent tends to 1 and so U = −NJ/4 (the two coupled spins are parallel for J > 0). In the case

of antiferromagnetic coupling, J < 0 and so tanh(βJ/4) → −1 for T → 0, so that for both ferro-

and antiferromagnetic coupling it follows that U = −N |J |/4 at zero temperature. The average

spin value per two-spin system is 〈Sz〉 = 〈m1 + m2〉 = 1
Z

∂Z
∂(βh) . Use the Z1/2 partition function to

obtain 〈Sz〉 = eβJ/4 sinh(βh)

eβJ/4 cosh(βh)+eβJ/4
= sinh(βh)

cosh(βh)+e−βJ/2
. The susceptibility can be obtained by differe-

tiating this expression with respect to the magnetic field, χ ∝ β[cosh2(βh)+cosh(βh)e−βJ/2−sinh2(βh)]

(cosh(βh)+e−βJ/2)2
=

β[1+cosh(βh)e−βJ/2]

(cosh(βh)+e−βJ/2)2
. In particular, at zero field χ ∝ β

1+e−βJ/2
. In the ferromagnetic case J > 0, the

exponential is very small at low temperatures, βJ � 1, so that the susceptibility has a regular

value comparable with that of an isolated spin. On the contrary, in the antiferromagnetic case

J < 0 the exponential is large and therefore the susceptibility is very small.

4. Consider classical particles with the potential energy V (r) = κr2/2 in 3 dimensions. Calcu-

late the partition function, internal energy and heat capacity.

Soultion: Start by calculating the classical partition funtion which factorizes into the kinetic

and potentail parts: Zclass =
∫
d3p e−βp

2/(2m)
∫
d3r e−βkr

2/2 = ZkineticZpotential, where Zkinetic =[∫+∞
−∞ dpx e

−βp2x/(2m)
]3

= (2πmkT )3/2 and Zpotential =
[∫+∞
−∞ dx e−βkx

2/2
]3

= (2πkT/κ)3/2; hence

Zclass ∝ T 3. The internal energy and heat capacity are given by U = −N ∂ lnZclass
∂β = 3NkT and

C = ∂U
∂T = 3Nk. The factor of 3 here is due to the three translational degrees of freedom of the

system. Per each degree of freedom there is Nk/2 due to kinetic energy and the same amount due

to potential energy. This problem illustrates the equidistribution of energy over degrees of freedom

in classical statistical physics.


