Group Problems \#9 - Solutions

Monday, September 12

Problem 1 Relativistic kinetic energy and momentum

The total energy of a particle with speed u is given by $\gamma m c^{2}$, where $\gamma=1 / \sqrt{1-u^{2} / c^{2}}$, and m is the particle's mass. This total energy is the sum of the particle's kinetic energy and the rest energy, $m c^{2}$. The relativistic 3 -momentum of the particle is $\gamma m u$.
(a) Write a simple expression for the kinetic energy of the particle in terms of the given quantities.
The problems states that $E=\gamma m c^{2}=K+m c^{2}$, where K is the kinetic energy. Solving for K gives $K=(\gamma-1) m c^{2}$.
(b) How fast does the particle need to move for its kinetic energy to account for $2 / 3$ of the total energy?
The problem states that $K=(\gamma-1) m c^{2}=2 / 3 \gamma m c^{2} \longrightarrow \gamma=3$. So we can solve for β :

$$
\begin{align*}
\frac{1}{\sqrt{1-\beta^{2}}}=3 & \Longrightarrow 1-\beta^{2}=\frac{1}{9} \tag{1}\\
& \Longrightarrow \beta=\frac{\sqrt{8}}{3} \tag{2}
\end{align*}
$$

So the particle must travel at $u=\sqrt{8} c / 3$ for its kinetic energy to account for $2 / 3$ of the total energy.
(c) What is the momentum of this particle?

The momentum of the particle is $p=\gamma m u=3 m \sqrt{8} c / 3=\sqrt{8} m c$. Now notice that if we know only the total energy of the particle $E=\gamma m c^{2}$ and its momentum $p=\gamma m u$, we can readily find its speed:

$$
\begin{equation*}
\frac{p c}{E}=\frac{\gamma m u c}{\gamma m c^{2}}=\frac{u}{c}=\beta \tag{3}
\end{equation*}
$$

In this case, we have $\beta=\left(\sqrt{8} m c^{2}\right) /\left(3 m c^{2}\right)=\sqrt{8} / 3$ as we found above.

Problem 2 Dot product of 4-vectors

Show that the dot product of two 4 -vectors is a scalar. That is, show that for any two 4 -vectors, \vec{a} and \vec{b}, their dot product in one frame S is equal to their dot product in another frame S^{\prime} moving with respect to $S: \vec{a} \cdot \vec{b}=\overrightarrow{a^{\prime}} \cdot \overrightarrow{b^{\prime}}$.
For simplicity, let's assume that the S^{\prime}-frame moves with velocity v in the $+x$ direction. So, the task is to compare the dot products before and after \vec{a} and \vec{b} have undergone a Lorentz transformation. The product in the S-frame is:

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=a_{0} b_{0}-a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3} . \tag{4}
\end{equation*}
$$

The Lorentz transformation matrix for both \vec{a} and \vec{b} is:

$$
\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \tag{5}\\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

which gives for the components of $\overrightarrow{a^{\prime}}: a_{0}^{\prime}=\gamma a_{0}-\beta \gamma a_{1}, a_{1}^{\prime}=-\beta \gamma a_{0}+\gamma a_{1}, a_{2}^{\prime}=a_{2}$, and $a_{3}^{\prime}=a_{3}$. Similarly for $\overrightarrow{b^{\prime}}: b_{0}^{\prime}=\gamma b_{0}-\beta \gamma b_{1}, b_{1}^{\prime}=-\beta \gamma b_{0}+\gamma b_{1}, b_{2}^{\prime}=b_{2}$, and $b_{3}^{\prime}=b_{3}$. So $\overrightarrow{a^{\prime}} \cdot \overrightarrow{b^{\prime}}=\left(\gamma a_{0}-\beta \gamma a_{1}\right)\left(\gamma b_{0}-\beta \gamma b_{1}\right)-\left(-\beta \gamma a_{0}+\gamma a_{1}\right)\left(-\beta \gamma b_{0}+\gamma b_{1}\right)-a_{2} b_{2}-a_{3} b_{3}$. Multiplying, gathering, and canceling terms then gives $\overrightarrow{a^{\prime}} \cdot \overrightarrow{b^{\prime}}=a_{0} b_{0} \gamma^{2}\left(1-\beta^{2}\right)+$ $a_{1} b_{1} \gamma^{2}\left(\beta^{2}-1\right)-a_{2} b_{2}-a_{3} b_{3}$. Now we recognize that $1-\beta^{2}=1 / \gamma^{2}$, so finally we have $\overrightarrow{a^{\prime}} \cdot \overrightarrow{b^{\prime}}=a_{0} b_{0}-a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}=\vec{a} \cdot \vec{b}$.

Problem 3 Magnitude of the 4-velocity

Apply the formula for the magnitude of a 4 -vector to the general 4-velocity $(\vec{v}=$ $\left.\gamma c, \gamma v_{x}, \gamma v_{y}, \gamma v_{z}\right)$ to show that its magnitude is indeed c.
The 4 -velocity is defined as $\vec{v}=\left(\gamma c, \gamma v_{x}, \gamma v_{y}, \gamma v_{z}\right)$. The inner product of \vec{v} with itself is $\vec{v} \cdot \vec{v}=|\vec{v}|^{2}=\gamma^{2} c^{2}-\gamma^{2} v_{x}^{2}-\gamma^{2} v_{y}^{2}-\gamma^{2} v_{z}^{2}$. Now $v_{x}^{2}+v_{y}^{2}+v_{z}^{2}=v^{2}$, so $\vec{v} \cdot \vec{v}=\gamma^{2}\left(c^{2}-v^{2}\right)=\gamma^{2} c^{2}\left(1-v^{2} / c^{2}\right)=\gamma^{2} c^{2} / \gamma^{2}=c^{2}$, and we see finally that $|\vec{v}|=c$.

