Group Problems #8 - Solutions

Friday, September 9

Problem 1 Proper length

Consider two events A(ct, x) = (0, 0) and B(1 m, 3/2 m) in frame S(ct, x).

(a) Plot the events in the S(ct, x) frame.

The time interval between A and B in frame S is $c\Delta t = 1 - 0 = 1$ m and the space interval is $\Delta x = 3/2 - 0 = 3/2$ m. Thus the invariant interval is $(\Delta s)^2 = (c\Delta t)^2 - (\Delta x)^2 = 1 - 9/4 = -5/4$ m². Since $(\Delta s)^2 < 0$, A and B are separated by a space-like interval and thus we can, in principle, find a frame in which the two events happen at the same time; that is, we can find the proper distance between them (see parts b & c).

(b) Find the velocity of the frame S'(ct', x') in which the two events happen at the same time.

There are a number of ways to go about this, including using space-time diagrams. However, the most straightforward is to use the Lorentz transformation for the time coordinate: $c\Delta t' = \gamma(c\Delta t) - \beta\gamma(\Delta x)$. (This follows from the first row of the Lorentz Transformation matrix.) The problem asks you to find a frame in which the two events happen at the same time, so $\Delta t' = 0$. Thus, we have:

$$c\Delta t' = 0 = \gamma(c\Delta t) - \beta\gamma(\Delta x) \tag{1}$$

$$= \gamma(1 \,\mathrm{m}) - \beta \gamma(3/2 \,\mathrm{m}) \tag{2}$$

$$\implies (3/2)\beta\gamma = \gamma,\tag{3}$$

and thus we see that $\beta = 2/3$, or v = 2/3c. So the two events are simultaneous in a reference frame which moves with v = 2c/3 in the +x direction.

(c) What is the proper distance $\Delta x'$ between A and B?

The proper distance is defined as the space interval between two events that happen at the same time in a particular reference frame. There are several ways to go about finding the proper distance between events A and B, including using a Lorentz Transformation to find $\Delta x'$ with $\beta = 2/3$ as we calculated above. A more general and simple way is to use the invariant interval:

$$(\Delta s)^2 = (\Delta s')^2 \Longrightarrow (c\Delta t)^2 - (\Delta x)^2 = (c\Delta t')^2 - (\Delta x')^2 \tag{4}$$

$$(1 \text{ m})^2 - (3/2 \text{ m})^2 = (0)^2 - (\Delta x')^2$$
 (5)

$$-5/4 \,\mathrm{m}^2 = -(\Delta x')^2, \tag{6}$$

and we see that $\Delta x' = \sqrt{5}/2$ m. This is the proper distance between events A and B, and as such it is the longest possible space interval between the two events.

Problem 2 Doppler shift

The [O II] emission line with rest-frame wavelength $\lambda_0 = 3727$ angstroms (Å) is observed in a distant galaxy to be at $\lambda = 9500$ Å. The redshift z is the *fractional change* in the observed wavelength compared to the rest-frame wavelength.

(a) What is the redshift z of the galaxy?

Here, we simply need to interpret the definition of z given above:

$$z = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{9500 - 3727}{3727} = 1.55.$$
 (7)

(b) What is the recession speed β of the galaxy?

The Doppler shift is defined in terms of frequency ν , so we first need to convert light wavelength to frequency. For any traveling wave, the frequency is the number of cycles (crests or valleys of the wave) per second that pass a particular point in space - it is the inverse of the wave's period. Thus the frequency is $\nu = c/\lambda$, where c is the speed of the wave (the speed of light in this case) and λ is its wavelength. Using the Doppler shift expression we have:

$$\frac{\nu_{\rm obs}}{\nu_{\rm source}} = \frac{\sqrt{1-\beta^2}}{1+\beta\cos\theta} \tag{8}$$

$$= \frac{c\,\lambda_{\text{source}}}{c\,\lambda_{\text{obs}}} = \frac{\lambda_0}{\lambda}.$$
(9)

The problem asks for the "recession speed", implying that $\theta = 0$, where θ is the angle between the object's velocity vector and the line of sight between the observer and the object. Thus, we can solve for β :

=

$$\theta = 0 \implies \frac{\lambda_0}{\lambda} = \sqrt{\frac{1-\beta}{1+\beta}}$$
(10)

$$\implies \left(\frac{\lambda_0}{\lambda}\right)^2 = \frac{1-\beta}{1+\beta} \tag{11}$$

$$\implies \beta = \frac{1 - \left(\frac{\lambda_0}{\lambda}\right)^2}{1 + \left(\frac{\lambda_0}{\lambda}\right)^2}.$$
(12)

With $\lambda_0/\lambda = 3727/9500$, we have $\beta = 0.73$, or v = 0.73 c.

Problem 3 Anomalous observation

A space probe is launched from Earth at a speed of v = 0.8c. On board the probe, there is a powerful beacon that emits light at a wavelength $\lambda = 500$ nm (in its rest frame). Many years after launching, NASA scientists locate the probe with a powerful telescope, and they measure the light from the beacon to have a wavelength of $\lambda = 500$ nm (in their frame). Is this possible? If we assume that the probe is still moving at v = 0.8c relative to Earth, what is the explanation for this observation?

Mathematically, this problem states that $\nu_{obs}/\nu_{source} = \lambda_{source}/\lambda_{obs} = 1$. So we can use the Doppler shift equation to solve for the relationship between β and θ :

$$\frac{\lambda_{\text{source}}}{\lambda_{\text{obs}}} = \frac{\sqrt{1-\beta^2}}{1+\beta\cos\theta}.$$
(13)

Before we launch into the mathematical analysis, let's think about what we expect. The angle θ is defined relative to the line of sight between the observer and the object being measured, so $\theta = 0$ corresponds to the object moving directly away from the observer along the line of sight, $\theta = \pi$ corresponds to the object moving directly toward the observer, and $\theta = \pi/2$ corresponds to the object moving perpendicular to the line of sight. We know (from intuition and the equation above) that there will be a shift toward longer observed wavelengths (redshift) when $\theta = 0$ and shorter observed wavelengths (blueshift) when $\theta = \pi$. We also know that there is a (small) redshift when $\theta = \pi/2$. So somewhere between $\theta = \pi/2$ and π we must have a situation where $\lambda_{\text{source}}/\lambda_{\text{obs}} = 1$, that is where there is no shift at all between the observed and source wavelengths. Physically, this results from the fact that the Doppler shift arises from two distinct effects: time dilation, and the motion of the object relative to the observer (see Lecture #8). When the distance between the object and observer is decreasing, these two effects act in opposition, and thus under the right conditions (particular relationship between θ and β) they can exactly balance. Let's now find that relationship, first in a general way, and then for this particular problem.

Using the equation above with $\lambda_{obs} = \lambda_{source}$ gives:

$$\frac{\lambda_{\text{source}}}{\lambda_{\text{obs}}} = 1 = \frac{\sqrt{1-\beta^2}}{1+\beta\cos\theta} \implies 1+\beta\cos\theta = \sqrt{1-\beta^2}$$
(14)

$$\Rightarrow \cos \theta = \frac{1}{\beta} \left(\sqrt{1 - \beta^2} - 1 \right) \tag{15}$$

The first thing to notice is that since $0 \le \beta \le 1$, the value of the square-root term will always be ≤ 1 . Thus the right side of Eq. (15) will be negative. This matches with our logic above since $\cos \theta < 0$ for $\pi/2 < \theta \le \pi$.

_

The second thing to notice is that in the limit of very small probe velocity $(\beta \to 0)$, we can use a Taylor expansion for the term $\sqrt{1-\beta^2}$ in Eq. (15):

$$\beta \to 0 \Longrightarrow \cos \theta \approx \frac{1}{\beta} \left(1 - \frac{1}{2}\beta^2 - 1 \right) = -\frac{\beta}{2}.$$
 (16)

Thus in the limit $\beta \to 0$, then $\cos \theta \to 0$, and the object must travel nearly perpendicular to the line of site ($\theta \approx \pi/2$). In contrast, when $\beta \to 1$, then Eq. (15) shows that $\cos \theta \to -1$, and we see that the object must travel nearly directly toward the observer ($\theta \approx \pi$).

Now let's consider the specific case outlined in this problem, namely $\beta = 4/5$. Inserting this for β in Eq. (15) gives: $\cos \theta = 5/4(3/5 - 1) = 3/4 - 5/4 = -1/2$, so $\theta = \cos^{-1}(-1/2) = 120^{\circ}$.