
Group Problems #7 - Solutions

Wednesday, September 7

Problem 1 The invariant interval

Use the Lorentz transformations of ∆t and ∆x to show that (∆s)2 is invariant.
For frame S ′ moving in the +x direction with velocity v relative to frame S, the
Lorentz transformation matrix is given by:

γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 (1)

where β = v/c, γ = 1/
√

1− β2, and c is the speed of light in vacuum. Thus, we
have c∆t′ = γ(c∆t) − βγ∆x, and ∆x′ = −βγ(c∆t) + γ∆x. Squaring both of these
equations gives:

(c∆t′)2 = [γc∆t− βγ∆x]2 (2)

=
[
(γc∆t)2 + (βγ∆x)2 − 2(βcγ2∆x∆t)

]
, and (3)

(∆x′)2 =
[
(βγc∆t)2 + (γ∆x)2 − 2(βcγ2∆x∆t

]
. (4)

Now, the invariant interval in the S ′ frame is defined as (∆s′)2 = (c∆t′)2− (∆x′)2, so

(∆s′)2 = (c∆t)2γ2
[
1− β2

]
+ (∆x)2γ2

[
β2 − 1

]
. (5)

where the cross terms (proportional to ∆x∆t) have cancelled. Using the definition
for γ, we see that 1− β2 = 1/γ2, so the equation above reduces to:

(∆s′)2 = (c∆t)2γ2[1/γ2] + (∆x)2γ2[−1/γ2] (6)

= (c∆t)2 − (∆x)2 = (∆s)2. (7)

So ultimately we see that (∆s′)2 = (∆s)2. This proves in a general way that the
invariant interval is, in fact, invariant!
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Problem 2 Lorentz transformation

In Group Problems #6, a rocket ship traveling at v = 0.8c in the +x-direction passes
the Earth at noon (event A), then sends a radio signal back to Earth when it passes
a space station (event B). The Earth receives the signal (event C) and relays it back
toward the rocket ship, which later receives it at event D. In Earth’s frame, we found
the coordinates (ct, x) of these four events to be: A(0, 0); B(5/6, 2/3); C(1.5, 0); and
D(7.5, 6), where all coordinates are in units of c · h. Use a Lorentz transformation to
find the coordinates of these events in the rocket ship’s frame. Do they agree with
your space-time diagram solution?
From Eq. (1) above, we again have ct′ = γct − βγx, and x′ = −βγct + γx, where
we have identified the S frame as the Earth frame and the S ′ frame as the rocket’s
frame. Since β = 0.8 in this case, then γ = 5/3 and βγ = (4/5)(5/3) = 4/3. Thus
for this particular problem, we have:

ct′ =
5

3
ct− 4

3
x, and (8)

x′ = −4

3
ct+

5

3
x (9)

All that’s left to do is to plug the particular coordinates (ct, x) for each event in the
Earth frame into Eqs. (8) and (9) to find the corresponding coordinates in the Rocket
frame. Let’s start with the time coordinates:

A : (ct, x) = (0, 0) =⇒ ct′ =
5

3
(0)− 4

3
(0) = 0 (10)

B : (ct, x) = (5/6, 2/3) =⇒ ct′ =
5

3
· 5

6
− 4

3
· 2

3
= 0.5 (11)

C : (ct, x) = (3/2, 0) =⇒ ct′ =
5

3
· 3

2
− 4

3
(0) = 2.5 (12)

D : (ct, x) = (15/2, 6) =⇒ ct′ =
5

3
· 15

2
− 4

3
(6) = 4.5, (13)

where all the numbers are in units of c · h, the distance traveled by light in 1 hour.
And now the space coordinates:

A : (ct, x) = (0, 0) =⇒ x′ = −4

3
(0) +

5

3
(0) = 0 (14)

B : (ct, x) = (5/6, 2/3) =⇒ x′ = −4

3
· 5

6
+

5

3
· 2

3
= 0 (15)

C : (ct, x) = (3/2, 0) =⇒ x′ = −4

3
· 3

2
+

5

3
(0) = −2 (16)

D : (ct, x) = (15/2, 6) =⇒ x′ = −4

3
· 15

2
+

5

3
(6) = 0. (17)
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So finally we can write the coordinates of all the events in the Rocket’s frame:

A : (ct, x) = (0, 0) =⇒ (ct′, x′) = (0, 0) (18)

B : (ct, x) = (5/6, 2/3) =⇒ (ct′, x′) = (0.5, 0) (19)

C : (ct, x) = (3/2, 0) =⇒ (ct′, x′) = (2.5,−2) (20)

D : (ct, x) = (15/2, 6) =⇒ (ct′, x′) = (4.5, 0), (21)

and we see that all events except C happen at the location of the Rocket ship (x′ =
0). Below I have copied from Group Problems #6 the space-time diagrams in both
the Earth’s and Rocket’s frame, and we see that indeed the Lorentz-transformed
coordinates agree with the space-time diagram, as they must!

2/5 

A

C
ship 

station 

earth 

ct
�
(c

·h
ou

r)

x� (c · hour)

D

B

2/3 
A

B

C

x (c · hour)

ct
(c

·h
ou

r)

D

ship 

station 

earth 

Figure 1: Space-time diagrams in the Earth (left) and rocket ship (right) reference
frames.
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Problem 3 Proper time

Consider two events A(ct, x) = (0, 1 m) and B(1 m, 3/2 m) in frame S(ct, x).

(a) Plot the events in the S(ct, x) frame.

B 

A 

x (m)

ct
(m

)

The time interval between A and B in frame S is c∆t = 1−0 = 1 m and the space
interval is ∆x = 3/2− 1 = 1/2 m. Thus the interval is (∆s)2 = (c∆t)2− (∆x)2 =
1−1/4 = 3/4 m2. Since (∆s)2 > 0, A and B are separated by a time-like interval
and thus we can, in principle, find a frame in which the two events happen at
the same location in space; that is, we can find the proper time interval between
them (see parts b & c).

(b) Find the velocity of the frame S ′(ct′, x′) in which the two events happen at the
same place.

There are a number of ways to go about this, including using space-time diagrams.
However, the most straightforward is to use the Lorentz transformation for the
spatial coordinate: ∆x′ = −βγ(c∆t) + γ(∆x). (This follows from the second row
of the Lorentz Transformation matrix shown in Eq. (1) above.) The problem asks
you to find a frame in which the two events happen at the same spatial location,
so ∆x′ = 0. Thus, we have:

∆x′ = 0 = −βγ(c∆t) + γ(∆x) (22)

= −βγ(1 m) + γ(0.5 m) (23)

=⇒ βγ = 0.5γ, (24)

and we see that β = 0.5, or v = c/2. So the two events happen at the same spatial
location in a reference frame which moves with v = c/2 in the +x direction.

(c) What is the proper time separation ∆t′ between A and B?

The proper time is defined as the time interval between two events that happen
at the same spatial location in a particular reference frame. There are several
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ways to go about finding the proper time between events A and B, including
using a Lorentz Transformation to find c∆t′ with β = 0.5 as we calculated above.
A more general and simple way is to use the invariant interval:

(∆s)2 = (∆s′)2 =⇒ (c∆t)2 − (∆x)2 = (c∆t′)2 − (∆x′)2 (25)

(1 m)2 − (0.5 m)2 = (c∆t′)2 − (0)2 (26)

3/4 m2 = (c∆t′)2, (27)

and we see that c∆t′ =
√

3/2 m, or ∆t′ =
√

3/2 m/c. This is the proper time
between events A and B, and as such it is the shortest possible time interval
between the two events.
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