Group Problems \#34 - Solutions

Monday, November 21

Problem 1 The radial wavefunction

An electron in a hydrogen atom is in a $3 d$ state.
(a) What are the principle quantum number and angular momentum quantum number for this electron?

For a $3 d$ state, we have $n=3$ and $\ell=2$.
(b) What is the radial wavefunction for this electron? (Hint: $L_{0}^{5}=1$)

From the notes, we have:

$$
\begin{equation*}
R(r)=\left(\frac{2}{n a_{0}}\right)^{3 / 2} \sqrt{\frac{(n-\ell-1)!}{2 n[(n+\ell)!}} e^{-r / n a_{0}}\left(\frac{2 r}{n a_{0}}\right)^{\ell} L_{n-\ell-1}^{2 \ell+1}\left(\frac{2 r}{n a_{0}}\right), \tag{1}
\end{equation*}
$$

where the last parentheses denote the argument of the associated Laguerre polynomials, $L_{n-\ell-1}^{2 \ell+1}$. For the $3 d$ state, we have $n=3$ and $\ell=2$, so the polynomial term is $L_{0}^{5}=1$. Evaluating the other constants gives:

$$
\begin{align*}
R_{3,2}(r) & =\left(\frac{2}{3 a_{0}}\right)^{3 / 2} \sqrt{\frac{1}{6(5!)}} e^{-r / 3 a_{0}}\left(\frac{2 r}{3 a_{0}}\right)^{2} L_{0}^{5} \tag{2}\\
& =\frac{2 \sqrt{2}}{\left(3 a_{0}\right)^{3 / 2}} \frac{4}{9 a_{0}^{2}} \frac{1}{12 \sqrt{5}} r^{2} e^{-r / 3 a_{0}} \tag{3}\\
& =\frac{1}{\left(3 a_{0}\right)^{3 / 2}} \frac{2 \sqrt{2}}{27 \sqrt{5} a_{0}^{2}} r^{2} e^{-r / 3 a_{0}} \tag{5}\\
& =\left(A_{3,2}\right) r^{2} e^{-r / 3 a_{0}}
\end{align*}
$$

where $A_{3,2}$ is a constant.
(c) What is the most probable radius to find the electron?

The most probable radius for the electron can be found by taking the derivative of the probability density, $r^{2} R^{2}(r)$ with respect to r and setting this to zero. In particular,

$$
\begin{align*}
r^{2} R_{3,2}^{2}(r) & =\left(A_{3,2}\right)^{2} r^{6} e^{-2 r / 3 a_{0}} \tag{9}\\
\Longrightarrow \frac{d\left(r^{2} R^{2}\right)}{d r} & =\left(A_{3,2}\right)^{2}\left[6 r^{5} e^{-2 r / 3 a_{0}}+r^{6}\left(-\frac{2}{3 a_{0}}\right) e^{-2 r / 3 a_{0}}\right] \tag{10}\\
& =\left(A_{3,2}\right)^{2} r^{5} e^{-2 r / 3 a_{0}}\left[6-\frac{2 r}{3 a_{0}}\right]=0 .
\end{align*}
$$

Eqn. (13) is true at $r=0, r=\infty$, and when the expression in square brackets is zero. The first two options are not interesting, thus we have:

$$
\begin{equation*}
6=\frac{2 r}{3 a_{0}} \Longrightarrow r=9 a_{0} \tag{14}
\end{equation*}
$$

Problem 2 High angular momentum orbitals in hydrogen

Show that for those orbitals with the largest possible angular momentum, the most probable radius for the electron is quantized.
We follow a similar procedure as problem 1(c), starting with the general expression in Eqn. (1). The states with maximum possible angular momentum have $\ell=n-1$, so the radial wavefunctions become:

$$
\begin{equation*}
R_{n}(r)=A_{n} e^{-r / n a_{0}} r^{n-1} \Longrightarrow r^{2} R_{n}^{2}(r)=A_{n}^{2} r^{2 n} e^{-2 r / n a_{0}}, \tag{15}
\end{equation*}
$$

where the constant A_{n} has all the terms not containing r. As above, now we just need to take the derivative of $r^{2} R^{2}$ and set it to zero:

$$
\begin{align*}
\frac{d\left(r^{2} R^{2}\right)}{d r} & =A_{n}^{2}\left[2 n r^{2 n-1} e^{-2 r / n a_{0}}+r^{2 n}\left(-\frac{2}{n a_{0}}\right) e^{-2 r / n a_{0}}\right] \tag{16}\\
& =A_{n}^{2} 2 r^{2 n-1} e^{-2 r / n a_{0}}\left[n-\frac{r}{n a_{0}}\right]=0 \tag{17}\\
\Longrightarrow r & =n^{2} a_{0} . \tag{18}
\end{align*}
$$

