Group Problems \#33 - Solutions

Friday, November 17

Problem 1 Spherical Coordinates

Show that:

$$
\begin{aligned}
& \hat{r}=\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z} \\
& \hat{\theta}=\cos \theta \cos \phi \hat{x}+\cos \theta \sin \phi \hat{y}-\sin \theta \hat{z} \\
& \hat{\phi}=-\sin \phi \hat{x}+\cos \phi \hat{y} .
\end{aligned}
$$

The easiest way to proceed is to use the identities:

$$
\begin{aligned}
\hat{r} & =\frac{\partial \vec{r} / \partial r}{|\partial \vec{r} / \partial r|} \\
\hat{\theta} & =\frac{\partial \vec{r} / \partial \theta}{|\partial \vec{r} / \partial \theta|} \\
\hat{\phi} & =\frac{\partial \vec{r} / \partial \phi}{|\partial \vec{r} / \partial \phi|},
\end{aligned}
$$

where $\vec{r}=r \sin \theta \cos \phi \hat{x}+r \sin \theta \sin \phi \hat{y}+r \cos \theta \hat{z}$. Computing the derivatives for \hat{r} gives:

$$
\begin{aligned}
\frac{\partial \vec{r}}{\partial r} & =\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z} \\
\left|\frac{\partial \vec{r}}{\partial r}\right| & =\sqrt{\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta}=1 \\
\Longrightarrow \hat{r} & =\sin \theta \cos \phi \hat{x}+\sin \theta \sin \phi \hat{y}+\cos \theta \hat{z} .
\end{aligned}
$$

Similarly, for $\hat{\theta}$:

$$
\begin{aligned}
\frac{\partial \vec{r}}{\partial \theta} & =r \cos \theta \cos \phi \hat{x}+r \cos \theta \sin \phi \hat{y}+r \sin \theta \hat{z} \\
\left|\frac{\partial \vec{r}}{\partial \theta}\right| & =\sqrt{r^{2} \cos ^{2} \theta \cos ^{2} \phi+r^{2} \cos ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta}=r \\
\Longrightarrow \hat{\theta} & =\cos \theta \cos \phi \hat{x}+\cos \theta \sin \phi \hat{y}+\sin \theta \hat{z} .
\end{aligned}
$$

And finally, for $\hat{\phi}$:

$$
\begin{aligned}
\frac{\partial \vec{r}}{\partial \phi} & =-r \sin \theta \sin \phi \hat{x}+r \sin \theta \cos \phi \hat{y} \\
\left|\frac{\partial \vec{r}}{\partial \phi}\right| & =\sqrt{r^{2} \sin ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta \cos ^{2} \phi}=r \sin \theta \\
\Longrightarrow \hat{\phi} & =-\sin \phi \hat{x}+\cos \phi \hat{y} .
\end{aligned}
$$

Problem 2 Quantization of angular momentum for a satellite

You and your friend won a NASA grant to do some quantum mechanics experiments on the international space station. After a long day, you decide to go for a space walk. The space station has an orbital radius of $\sim 7,000 \mathrm{~km}$ and a speed of $\sim 7.5 \mathrm{~km} / \mathrm{s}$. How many allowed values for the z-component of your angular momentum are there? You can use your actual mass, or can assume you have ballooned to a hefty mass of 100 kg due to your rigorous exercise regimen, which consists entirely of space beer-pong (or is it beer space-pong?).
The total angular momentum for a $m=100-\mathrm{kg}$ object orbiting at a radius of $r=$ $7,000 \mathrm{~km}$ at a speed of $v=7.5 \mathrm{~km} / \mathrm{s}$ is given by $m v r=100 * 7.5 * 7,000=5.25 \times 10^{12}$ $\mathrm{kg}-\mathrm{m}^{2} / \mathrm{s}=5.25 \times 10^{12} \mathrm{~J}$-s. According to the postulates of quantum mechanics, the total angular momentum is equivalent to:

$$
\begin{aligned}
|\vec{L}| & =\sqrt{\ell(\ell+1)} \hbar \simeq \ell \hbar(\text { for } \ell \gg 1) \\
\Longrightarrow \ell & \simeq \frac{L}{\hbar}=\frac{5.25 \times 10^{12}}{1.05 \times 10^{-34}}=5 \times 10^{46} .
\end{aligned}
$$

So ℓ is a very large integer! There are $2 \ell+1=10^{47}$ possible values for the z-component of the angular momentum.

