Group Problems \#2 Solutions

Wednesday, August 24

Problem 1 Plotting Events on a Classical Space-Time Diagram

You are walking at $2 \mathrm{~m} / \mathrm{s}$ down a straight road. At a particular time you pass your friend Katrina, who is standing still. 5 s later a dog barks; at that moment he is 10 m ahead of you in the road. After another 5 s , a car backfires; at that moment it is 15 m behind you.
(a) Plot and label the events described above on a two-dimensional graph of time vs. position (space-time diagram) corresponding to your reference frame.

Figure 1: Space-time diagram in your reference frame.
(b) Plot and label the same events on a space-time diagram corresponding to Katrina's reference frame. (Assume your and Katrina's watches are synchronized.)

Figure 2: Space-time diagram in Katrina's reference frame.

Problem 2 Relative Velocity

If you throw a superball (perfectly elastic) with speed u at a stationary wall, it bounces back with the same speed in the opposite direction.
(a) What happens if you throw it at speed u towards a wall which is traveling towards you at speed w ?

Figure 3: Superball approaching a moving wall.

Let's designate your reference frame as unprimed (S) and the wall's frame as primed $\left(S^{\prime}\right)$. So the ball moves with velocity $+u$ (to the right) in the S frame and the wall moves with velocity $v=-w$ (to the left) in the S frame. Obviously, the relative speed between the ball and wall is $u+w$ (classically). Formally, this can be obtained by doing a classical (Galilean) velocity transformation from the S to the S^{\prime} frame: $u^{\prime}=u-v=u+w$. Thus, in the S^{\prime} frame, the ball approaches the wall with velocity $u^{\prime}=u+w$ and will rebound with velocity $u_{\mathrm{reb}}^{\prime}=-(u+w)$.
Now transform the rebound velocity back to the unprimed S frame: $u_{\text {reb }}=$ $u_{\text {reb }}^{\prime}+v=-(u+w)+(-w)=-(u+2 w)$. Thus we see that the ball rebounds
with speed $u+2 w$ in your reference frame.
(b) What is the answer in the limit in which w is much larger than u ?

If $w \gg v$, then we can neglect u in the above equation, and $u_{\text {reb }}=-2 w$. So in this limit, the rebound velocity is independent of the ball's initial velocity.

