Group Problems \#27-Solutions

Wednesday, November 2

Problem 1 Gaussian solution to the harmonic oscillator

As we'll see, the ground-state of the quantum harmonic oscillator has a Gaussian wavefunction of the form $\psi(x)=A e^{-a x^{2}}$.
(a) What are the units (dimensions) of the constant a ?

The argument of the exponential function must be dimensionless (otherwise, what would be the dimension of the exponential function itself?). Thus, a must have units of $1 /$ length $^{2}: a \equiv L^{-2}$.
(b) Use the kinetic energy operator \hat{K} to find an expression for the constant a in terms of the classical turning point, x_{T}, where a classical oscillator (e.g., mass on a spring) would change direction.
The kinetic energy operator is defined as:

$$
\begin{equation*}
\hat{K}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}, \tag{1}
\end{equation*}
$$

where \hat{K} acting on the wave function gives the value of the kinetic energy $K(x)$ at a particular position x multiplied by the wave function: $\hat{K} \psi(x)=K(x) \psi(x)$. Applying this to the wave function above gives:

$$
\begin{align*}
\hat{K} \psi(x)=K(x) \psi(x) & \Longrightarrow-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\left[A e^{-a x^{2}}\right]=\frac{\hbar^{2} a}{m} A e^{-a x^{2}}\left[1-2 a x^{2}\right] \tag{2}\\
& \Longrightarrow K(x)=\frac{\hbar^{2} a}{m}\left[1-2 a x^{2}\right] \tag{3}
\end{align*}
$$

At the classical turning point, $x=x_{T}$, the kinetic energy is zero, so

$$
\begin{align*}
K\left(x=x_{T}\right)=0 & \Longrightarrow 1-2 a x_{T}^{2}=0 \tag{4}\\
& \Longrightarrow a=\frac{1}{2 x_{T}^{2}}, \tag{5}
\end{align*}
$$

and we see that a has units of $1 /$ length 2 as required. Note that $E=U(x)$ at $x=x_{T}$, and there is an inflection point in $\psi(x)$.
(c) Consider a particle in the ground state of the harmonic oscillator potential. If you were to make a measurement of its kinetic energy K at a particular point in space, then you must get a number. If you repeat this measurement over and over again, will you get the same number? Why or why not? (Hint: think about the commutation relationship between the position operator \hat{x} and the kinetic energy operator \hat{K}.)
Using the hint, we should calculate the commutator of \hat{K} and \hat{x} : $[\hat{K}, \hat{x}]=\hat{K} \hat{x}-$ $\hat{x} \hat{K}$, where:

$$
\begin{align*}
\hat{K} & =-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \tag{6}\\
\hat{x} & =x . \tag{7}
\end{align*}
$$

Applying this to the wave function, we have:

$$
\begin{align*}
\hat{K} \hat{x} \psi(x) & =-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\left[x A e^{-a x^{2}}\right] \tag{8}\\
& =-A \frac{\hbar^{2}}{2 m} \frac{\partial}{\partial x}\left[e^{-a x^{2}}\left(1-2 a x^{2}\right)\right] \tag{9}\\
& =A e^{-a x^{2}} \frac{\hbar^{2}}{2 m} 2 a x\left(3-2 a x^{2}\right),
\end{align*}
$$

and

$$
\begin{align*}
\hat{x} \hat{K} \psi(x) & =-\frac{\hbar^{2}}{2 m} x \frac{\partial^{2}}{\partial x^{2}}\left[A e^{-a x^{2}}\right] \tag{13}\\
& =\frac{\hbar^{2}}{2 m} A x \frac{\partial}{\partial x}\left[2 a x e^{-a x^{2}}\right] \tag{15}\\
& =A e^{-a x^{2}} \frac{\hbar^{2}}{2 m} 2 a x\left(1-2 a x^{2}\right) .
\end{align*}
$$

Putting this together gives:

$$
\begin{align*}
{[\hat{K}, \hat{x}] \psi(x) } & =[\hat{K} \hat{x}-\hat{x} \hat{K}] A e^{-a x^{2}} \tag{18}\\
& =A e^{-a x^{2}} \frac{\hbar^{2}}{2 m} 2 a x\left[\left(3-2 a x^{2}\right)-\left(1-2 a x^{2}\right)\right] \tag{19}\\
& =A e^{-a x^{2}} \frac{\hbar^{2}}{2 m} 2 a x \cdot 2 \tag{21}\\
\Longrightarrow[\hat{K}, \hat{x}] & =\frac{2 a \hbar^{2}}{m} x \neq 0
\end{align*}
$$

Since this is not equal to zero, the \hat{K} and \hat{x} do not commute, and we cannot simultaneously measure the particle's kinetic energy and position simultaneously. So if we constrain our measurement to a particular value of position (x), then we will measure a spread in kinetic energy values when we repeat the measurement many times on a similarly prepared system.
(d) What is the expectation value for the momentum of a particle in the ground state of the harmonic oscillator? (Hint: This question involves doing an apparent integral, but you can use symmetry arguments to avoid actually computing the integral.)
The expectation value of the physical quantity (observable) associated with operator \hat{O} is given by:

$$
\begin{equation*}
\langle O\rangle=\int_{-\infty}^{\infty} \psi^{*}(x) \hat{O} \psi(x) d x \tag{25}
\end{equation*}
$$

In this case, $\hat{O}=\hat{p}=-i \hbar \frac{\partial}{\partial x}$. So finally,

$$
\begin{align*}
\langle p\rangle & =-i \hbar A^{2} \int_{-\infty}^{\infty} e^{-a x^{2}} \frac{d}{d x}\left(e^{-a x^{2}}\right) d x \tag{26}\\
& =2 i \hbar A^{2} a \int_{-\infty}^{\infty} x e^{-2 a x^{2}} d x=0, \tag{27}
\end{align*}
$$

since the argument is an odd function of x integrated over symmetric bounds. Thus, the expectation value of the momentum is zero: this doesn't mean that a measurement of the momentum will equal zero. It means that repeated measurements of the momentum on similarly prepared systems will yield a mean value of zero.

