Group Problems \#25 - Solutions

Friday, October 28

Problem 1 Superposition state

A particle is trapped in a 1 D infinite square well of length L. It is prepared in a particular state, $\psi(x)$, and a measurement is made of its energy. This process is repeated many times; each time the particle is prepared in the same state, $\psi(x)$. After a large number of measurements, it is found that 50% of the time, the measurement results in a value of $h^{2} / 8 m L^{2}, 25 \%$ of the time in $h^{2} / 2 m L^{2}$, and 25% of the time in $9 h^{2} / 8 m L^{2}$.
(a) Write down an explicit expression for the wavefunction $\psi(x)$.

In general, $\psi(x)$ is a superposition of eigenstates:

$$
\begin{equation*}
\psi(x)=\sum_{n=1}^{\infty} C_{n} \psi_{n}(x) \tag{1}
\end{equation*}
$$

When an energy measurement is made on the wavefunction, a single, real-valued number must be the result, and this number must correspond to one of the eigenenergies, E_{n}. Furthermore, the probability of obtaining a particular eigenergy, E_{n}, for a particular measurement is given by the magnitude squared of the normalized coefficient, $\left|C_{n}\right|^{2}$. The given eigenenergies correspond to $n=1$, $n=2$, and $n=3$. Thus we have $\left|C_{1}\right|^{2}=1 / 2,\left|C_{2}\right|^{2}=1 / 4$, and $\left|C_{3}\right|^{2}=1 / 4$. Thus, if we neglect the possibility that the coefficients, C_{n}, are complex (this is not true in general, but we can stipulate this for a particular problem), we find that $C_{1}=1 / \sqrt{(2)}, C_{2}=1 / 2$, and $C_{3}=1 / 2$. This gives:

$$
\begin{align*}
\psi(x) & =\frac{1}{\sqrt{2}} \psi_{1}(x)+\frac{1}{2} \psi_{2}(x)+\frac{1}{2} \psi_{3}(x) \tag{2}\\
& =\sqrt{\frac{2}{L}}\left[\frac{1}{\sqrt{2}} \sin \left(\frac{\pi x}{L}\right)+\frac{1}{2} \sin \left(\frac{2 \pi x}{L}\right)+\frac{1}{2} \sin \left(\frac{3 \pi x}{L}\right)\right] \tag{3}
\end{align*}
$$

(b) What is the expectation value of the energy?

The expectation value of the energy is given by,

$$
\begin{align*}
\langle E\rangle=\sum_{n=0}^{\infty}\left|C_{n}\right|^{2} E_{n} & =\frac{h^{2}}{8 m L^{2}}\left[1^{2}\left(\frac{1}{\sqrt{2}}\right)^{2}+2^{2}\left(\frac{1}{2}\right)^{2}+3^{2}\left(\frac{1}{2}\right)^{2}\right] \tag{4}\\
& =\frac{h^{2}}{8 m L^{2}}\left(\frac{1}{2}+1+\frac{9}{4}\right)=\frac{15 h^{2}}{32 m L^{2}} \tag{5}
\end{align*}
$$

(c) If a particular measurement of the energy yields a value of $h^{2} / 2 m L^{2}$, what is the probability that the particle can then be found between $x=0$ and $x=L / 4$?
The given eigenenergy corresponds to $n=2$. Thus, immediately after the measurement, the particle is in the $n=2$ eigenstate with wavefunction,

$$
\begin{equation*}
\psi(x)=\psi_{2}(x)=\sqrt{\frac{2}{L}} \sin \frac{2 \pi x}{L} \tag{6}
\end{equation*}
$$

Note that although before the measurement, there is only a 25% probability of finding the particle in the $n=2$ eigenstate, after the measurement there is a 100% probability ($C_{1}=C_{3}=0$, and $C_{2}=1$ after the measurement). Thus we only have to integrate $\psi^{*} \psi$ over $x=0 \rightarrow L / 4$ to get the probability of finding the particle in that region. We can also do this by inspection of the graph of the probability density $d P / d x=\psi^{*} \psi$ for $n=2$ as given in the notes. The answer is $1 / 4$.

