Group Problems \#22 - Solutions

Friday, October 21

Problem 1 Ritz Combination Principle

Show that the longest wavelength of the Balmer series and the longest two wavelengths of the Lyman series satisfy the Ritz Combination Principle.

The wavelengths corresponding to transitions between two energy levels in hydrogen is given by:

$$
\begin{equation*}
\lambda=\lambda_{\text {limit }} \frac{n^{2}}{n^{2}-n_{0}^{2}}, \tag{1}
\end{equation*}
$$

where $n_{0}=1$ for the Lyman series, $n_{0}=2$ for the Balmer series, and $\lambda_{\text {limit }}=91.1 \mathrm{~nm}$ for the Lyman series and $\lambda_{\text {limit }}=364.5 \mathrm{~nm}$ for the Balmer series. Inspection of this equation shows that the longest wavelength corresponds to the transition between $n=n_{0}$ and $n=n_{0}+1$. Thus, for the Lyman series, the longest two wavelengths are λ_{12} and λ_{13}. For the Balmer series, the longest wavelength is λ_{23}.

The Ritz combination principle states that certain pairs of observed frequencies from the hydrogen spectrum add together to give other observed frequencies. For this particular problem, we then have:

$$
\begin{align*}
\nu_{12}+\nu_{23}=\nu_{13} & \Longrightarrow h\left(\nu_{12}+\nu_{23}\right)=h \nu_{13} \tag{2}\\
& \Longrightarrow h c\left(\frac{1}{\lambda_{12}}+\frac{1}{\lambda_{23}}\right)=h c \frac{1}{\lambda_{13}} \tag{3}\\
& \Longrightarrow \frac{1}{\lambda_{12}}+\frac{1}{\lambda_{23}}=\frac{1}{\lambda_{13}} . \tag{4}
\end{align*}
$$

Inverting Eqn. 1 above gives:

$$
\begin{equation*}
\frac{1}{\lambda}=\frac{1}{\lambda_{\text {limit }}} \frac{n^{2}-n_{0}^{2}}{n^{2}}=\frac{1}{\lambda_{\text {limit }}}\left(1-\frac{n_{0}^{2}}{n^{2}}\right) . \tag{5}
\end{equation*}
$$

To calculate $1 / \lambda_{12}$ and $1 / \lambda_{13}$, we use the Lyman series numbers and find $1 / \lambda_{12}=$ $3 /(4 * 91.1)=0.00823 \mathrm{~nm}^{-1}$ and $1 / \lambda_{13}=8 /(9 * 91.1)=0.00976 \mathrm{~nm}^{-1}$. To compute $1 / \lambda_{23}$, we use the Balmer series numbers and find $1 / \lambda_{23}=5 /(9 * 364.5)=0.00152$ nm^{-1}. Computing the left-hand-side of Eqn. 4 gives $1 / \lambda_{12}+1 / \lambda_{23}=0.00823+$ $0.00152=0.00975 \mathrm{~nm}^{-1}$, which is equal to $1 / \lambda_{13}$ within rounding error.

Problem 2 The Rydberg Constant

When an electron in an atom transitions between orbitals with principle quantum numbers n_{1} and n_{2}, the emitted (or absorbed) photon has an energy

$$
\begin{equation*}
h \nu=\left|E_{n_{1}}-E_{n_{2}}\right| . \tag{6}
\end{equation*}
$$

(a) Use Eq. (6) and the expression for the allowed electron energies, E_{n}, in the Bohr model to show that for hydrogen the emitted (or absorbed) photon has a wavelength

$$
\begin{align*}
\lambda & =\frac{64 \pi^{3} \epsilon_{0}^{2} \hbar^{3} c}{m_{e} e^{4}}\left|\frac{n_{1}^{2} n_{2}^{2}}{n_{1}^{2}-n_{2}^{2}}\right| \tag{7}\\
& =\frac{1}{R_{\infty}}\left|\frac{n_{1}^{2} n_{2}^{2}}{n_{1}^{2}-n_{2}^{2}}\right| \tag{8}
\end{align*}
$$

where R_{∞} is called the $R y d b e r g$ constant.
The expression for the allowed energies in hydrogen is given by:

$$
\begin{equation*}
E_{n}=-\frac{1}{n^{2}} \frac{e^{2}}{8 \pi \epsilon_{0} a_{0}}, \text { with } a_{0}=\frac{4 \pi \epsilon_{0} \hbar^{2}}{m e^{2}} \tag{9}
\end{equation*}
$$

where n is an integer 1 or greater, ϵ_{0} is the permittivity of free space, and a_{0} is the so-called Bohr radius with m the mass and e the charge of an electron. The energy difference in Eqn. 6 is then given by:

$$
\begin{equation*}
h \nu=\frac{h c}{\lambda}=\left|E_{n_{1}}-E_{n_{2}}\right|=\frac{e^{2}}{8 \pi \epsilon_{0} a_{0}}\left|\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}\right|=\frac{e^{2}}{8 \pi \epsilon_{0} a_{0}}\left|\frac{n_{1}^{2}-n_{2}^{2}}{n_{1}^{2} n_{2}^{2}}\right| . \tag{10}
\end{equation*}
$$

Inverting this equation and substituting for a_{0} gives:

$$
\begin{align*}
\lambda & =8 \pi \epsilon_{0} a_{0} \frac{h c}{e^{2}}\left|\frac{n_{1}^{2} n_{2}^{2}}{n_{1}^{2}-n_{2}^{2}}\right| \tag{11}\\
& =\frac{h c \cdot 8 \pi \epsilon_{0} \cdot 4 \pi \epsilon_{0} \hbar^{2}}{e^{2} \cdot m e^{2}}\left|\frac{n_{1}^{2} n_{2}^{2}}{n_{1}^{2}-n_{2}^{2}}\right| \tag{12}\\
& =\frac{64 \pi^{3} \epsilon_{0}^{2} \hbar^{3} c}{m e^{4}}\left|\frac{n_{1}^{2} n_{2}^{2}}{n_{1}^{2}-n_{2}^{2}}\right| \tag{13}
\end{align*}
$$

where we have used the identity $h=2 \pi \hbar$.
(b) What is the numerical value of $1 / R_{\infty}$ (don't forget the units!)? You may want to use the fine structure constant, α in your calculation:

$$
\begin{equation*}
\alpha=\frac{e^{2}}{4 \pi \epsilon_{0} \hbar c}=\frac{1}{137} . \tag{14}
\end{equation*}
$$

First of all, we see from Eq. 8 above that $1 / R_{\infty}$ must have units of length. Comparing Eq. 8 and Eq. 13 gives:

$$
\begin{align*}
\frac{1}{R_{\infty}}=\frac{64 \pi^{3} \epsilon_{0}^{2} \hbar^{3} c}{m e^{4}} & =\frac{16 \pi^{2} \epsilon_{0}^{2} \hbar^{2} c^{2}}{e^{4}} \frac{4 \pi \hbar c}{m c^{2}} \tag{15}\\
& =\frac{1}{\alpha^{2}} \frac{2 h c}{m c^{2}}=(137)^{2}\left(\frac{2 \cdot 1240 \mathrm{eV} \mathrm{~nm}}{511 \times 10^{3} \mathrm{eV}}\right) \tag{16}\\
& =91.09 \mathrm{~nm} . \tag{17}
\end{align*}
$$

(c) Find the wavelengths of the transitions from $n_{1}=3$ to $n_{2}=2$ and from $n_{1}=4$ to $n_{2}=2$. To which series do these two transitions belong?
Right away we see that the transition $n_{1}=3 \rightarrow n_{2}=2$ belongs to the Balmer series with $n_{2}=n_{0}=2$. The transition $n_{1}=4 \rightarrow n_{2}=2$ also belongs to the Balmer series for the same reason. Using Eq. 8 and our value for $1 / R_{\infty}$ gives:

$$
\begin{align*}
& \lambda_{23}=91.09\left|\frac{9 \cdot 4}{9-4}\right|=656 \mathrm{~nm} \tag{18}\\
& \lambda_{24}=91.09\left|\frac{16 \cdot 4}{16-4}\right|=486 \mathrm{~nm} \tag{19}
\end{align*}
$$

As a final note, we compare the phenomenological expression for the transition wavelengths, Eq. 1, and the expression derived from the Bohr model, Eq. 7. When $n_{2}=1$, then Eq. 7 becomes:

$$
\begin{equation*}
\lambda_{1, n_{1}}=91.09\left|\frac{n_{1}^{2}}{n_{1}^{2}-1^{2}}\right|, \tag{20}
\end{equation*}
$$

where n_{1} is an integer larger than 1 . This expression is precisely that for the transition wavelengths in the Lyman series, where $\lambda_{\text {limit }}=91.09 \mathrm{~nm}$ and $n_{0}=1$. Similarly, when $n_{2}=2$, we have:

$$
\begin{equation*}
\lambda_{2, n_{1}}=91.09\left|\frac{n_{1}^{2} \cdot 4}{n_{1}^{2}-2^{2}}\right|=364.4\left|\frac{n_{1}^{2}}{n_{1}^{2}-2^{2}}\right| \tag{21}
\end{equation*}
$$

where n_{1} is now an integer larger than 2 . This expression is exactly that for the transition wavelengths in the Balmer series, where $\lambda_{\text {limit }}=364.4 \mathrm{~nm}$ and $n_{0}=2$.

