Group Problems \#1
 Solutions

Tuesday, August 23

Problem 1 Galilean Transformation

You are driving at a steady $100 \mathrm{~km} / \mathrm{h}$. At noon you pass a parked police car. At twenty minutes past noon, the police car passes you, traveling at $120 \mathrm{~km} / \mathrm{h}$.
(a) How fast is the police car moving relative to you? $v_{d}=100 \mathrm{~km} / \mathrm{h}$ and $v_{p}=120$ $\mathrm{km} / \mathrm{h} \Longrightarrow \Delta v=20 \mathrm{~km} / \mathrm{h}$.
(b) When did the police car start driving, assuming that it accelerated from rest to $120 \mathrm{~km} / \mathrm{h}$ instantaneously? In 20 minutes ($1 / 3$ hour), the driver goes $100 \cdot 1 / 3 \mathrm{~km}$. Traveling at $120 \mathrm{~km} / \mathrm{h}$, it takes the police car $\Delta t_{p}=(100 / 3 \mathrm{~km}) /(120 \mathrm{~km} / \mathrm{h})=$ $5 / 18$ hour. So the police car starts $1 / 3-5 / 18=1 / 18$ hour after the car passes.
(c) How far away from you was the police car when it started? After $1 / 18 \mathrm{~h}$, the car has traveled $1 / 18 \mathrm{~h} \cdot 100 \mathrm{~km} / \mathrm{h}=50 / 9 \mathrm{~km}$.
(d) Plot the trajectories of the driver and police car on a graph (x vs. t). Now plot the trajectories as t vs. x.
(e) Plot the trajectories (t vs. x) from the driver's perspective: the rest frame of the driver.
(f) Plot the trajectories $(t$ vs. $x)$ in the police car's rest frame.
(g) Label the event coordinates in all three reference frames: Earth, Driver, Police. Use convention (t, x) for coordinates:
In Earth frame: $\mathrm{A}(0,0) ; \mathrm{B}(1 / 18$ hour, 0$) ; \mathrm{C}(1 / 3$ hour, $100 / 3 \mathrm{~km})$.
In Driver frame: $\mathrm{A}(0,0) ; \mathrm{B}(1 / 18$ hour, $-50 / 9 \mathrm{~km}) ; \mathrm{C}(1 / 3$ hour, 0$)$.
In Police frame: $\mathrm{A}(0,0) ; \mathrm{B}(1 / 18$ hour, 0$) ; \mathrm{C}(1 / 3$ hour, 0$)$.

Figure 1: Space-time diagrams in the Earth frame. The left panel shows x vs. t, while the right panel shows t vs. x.

Figure 2: Space-time diagram in the driver frame.

Figure 3: Space-time diagram in the police frame.

