
Group Problems #19 - Solutions

Friday, October 7

Problem 1 Time evolution of position uncertainty

A particle is initially moving along the x-direction with velocity v � c. At t = 0,
we measure the position of a particle, and find it to be somewhere in the interval
−a/2 ≤ x ≤ a/2. Where will we be likely to find the particle at times t > 0?
At t = 0, the particle can be found anywhere in the given range, so ∆x = a. By the
uncertainty principle, this implies that ∆p ∼ ~/a, or ∆v ∼ ~/ma, where m is the
particle’s mass. The best estimate of the particle’s location at t = 0 is in the center
of the given range, so its position is x = 0± a/2 and its velocity is v ± ~/2ma.

As time evolves, the uncertainty in the particle’s position changes due to two mecha-
nisms: 1) the initial uncertainty in its position as given above, and 2) the uncertainty
in its initial velocity leads to a range of possible positions at a later time. To see
how this works, we first must realize that if there were no uncertainty in the initial
position and velocity, the particle’s trajectory would be exactly determined for all
future times: x(t) = 0 + vt = vt.

Now we artificially set ∆v = 0 (at t = 0) to investigate the first effect described
above. Under this assumption, we have:
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where the subscript a in the last expression indicates that this is the position un-
certainty due to the initial constraint on the particle’s position. Now we artificially
set ∆x = 0 (at t = 0) to investigate the second effect described above. Under this
assumption, we have:
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where the subscript v in the last expression indicates that this is the position uncer-
tainty due to the uncertainty in the particle’s velocity.
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Since these two uncertainties (∆xa and ∆xv) are uncorrelated, we add them in quadra-
ture, to get the total uncertainty in the position:
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From this equation, we can deduce the behavior of ∆x(t) in the limit of short and
long times. For short times, namely when t� ma2/~, then we can neglect the second
term in the radical and ∆x(t) = a. This makes sense from the discussion above. For
long times, namely when t� ma2/~, then we can neglect the first term in the radical,
and the position uncertainty is linearly dependent on time, ∆x(t) = (~/ma)t. This
also makes sense.

The crossover between these two regimes happens at t = ma2/~, for which ∆x(t) =√
2a. We see that the crossover happens for shorter and shorter times if the particle

is constrained more tightly at t = 0, in other words as a becomes smaller. Also
notice that when a becomes smaller, the uncertainty increases more rapidly with
time. The temporal evolution of ∆x is most easily appreciated by plotting ∆x(t) vs.
t for various values of a. To facilitate this, we first divide both sides of the equation
above by ~/mc, which has units of length. This removes the dependence on m and
yields dimensionless lengths ∆x′ = ∆x/(~/mc), a′ = a/(~/mc), and dimensionless
time t′ = t//(~/mc2). With these definitions, the equation above simplifies to:

∆x′ =

√
(a′)2 +
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)2

. (5)

This is plotted below for four different values of a′: 0.2, 0.5, 1, and 2.
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Problem 2 Quantum uncertainty of a classical particle

The Lord decided to take a break during the creation of the universe 13 billion years
ago and play a little billiards. She pockets all the balls (after all, who can she play
against?) and leaves the cue-ball (m = 0.2 kg) in the center of the table, which
measures 1 m on a side. Just today, she decides to take another break (she’s been
pretty busy in the meantime) and returns to the table only to find the cue ball has
moved. How far? (Ignore expansion of the space-time continuum, i.e., the Big Bang.)
First, let’s determine whether we’re in the long-time limit for this problem using the
above relations. Here we have a = 1 m, m = 0.2 kg, so ma2/~ = (0.2 kg)(1 m2/(1.05×
10−34 kg m2/s) ∼ 2×1033 s. Thirteen billion years corresponds to (13×109 years)(31.6×
106 s/year) = 4.1× 1017 s. So clearly, we are in the short time regime and we should
not expect the ball to move very much. To calculate how much it moved, use the
uncertainty relation:

∆x∆p ∼ ~ =⇒ ∆v ∼ ~
m∆x

(6)

=
1.05× 10−34 kg m2/s

(0.2 kg)(1 m)
(7)

= 5.25× 10−34 m/s. (8)

If we assume that the cue ball has half this velocity, then in 13 billion years, it will
move a distance d = vt = (2.6 × 10−34 m/s)(4.1 × 1017 s) = 1.08 × 10−16 m. So the
cue ball has moved a distance corresponding to 1 millionth of a hydrogen atom! The
point is, the position of macroscopic objects is known with very small uncertainty.
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