Group Problems #17 - Solutions

Monday, October 3

Problem 1

Using the DeBroglie hypothesis, compute the wavelengths of the following:

(a) A 2200-lb car traveling at 80 mph.

The DeBroglie hypothesis relates an object's wavelength to its momentum:

$$\lambda = \frac{h}{p} = \frac{h}{\gamma m v},\tag{1}$$

where h is Planck's constant, m is the object's mass, v is its velocity, γ is the Lorentz factor associated with the object, and λ is its DeBroglie wavelength. For a non-relativistic object ($v \ll c$), then $\lambda \sim 1$, so p = mv. For the mass, we find: m = 2200 lb.= 1000 kg, and for the velocity: $v = (80 \text{ mile/h}) \times (1.61 \times 10^3 \text{ meters/mile}) \times (1 \text{ hour/60 minutes}) \times (1 \text{ min/60 seconds}) = 35.8 \text{ m/s}$. Putting it all together gives:

$$\lambda = \frac{h}{p} = \frac{6.626 \times 10^{-34} \text{ kg m}^2/\text{s}}{(10^3 \text{ kg})(35.8 \text{ m/s})} = \frac{6.626}{35.8} \times 10^{-37} \text{ m}$$
(2)

$$= 1.85 \times 10^{-38} \text{ m.}$$
 (3)

(b) A 10-g bullet traveling at 500 m/s. Here we have $m = 10^{-2}$ kg and u = 500

Here we have $m = 10^{-2}$ kg and v = 500 m/s, so

$$\lambda = \frac{h}{p} = \frac{6.626 \times 10^{-34} \text{ kg m}^2/\text{s}}{(10^{-2} \text{ kg})(500 \text{ m/s})} = \frac{6.626}{5} \times 10^{-34} \text{ m}$$
(4)

$$= 1.33 \times 10^{-34} \text{ m.}$$
 (5)

(c) A smoke-particle of mass 10^{-6} g moving at 1 cm/s. Here we have $m = 10^{-9}$ kg and $v = 10^{-2}$ m/s, so

$$\lambda = \frac{h}{p} = \frac{6.626 \times 10^{-34} \text{ kg m}^2/\text{s}}{(10^{-9} \text{ kg})(10^{-2} \text{ m/s})} = 6.626 \times 10^{-23} \text{ m.}$$
(6)

2

(d) An electron with kinetic energy 1 eV.

An electron can in principle travel at relativistic speeds, so we should first determine whether or not it is indeed relativistic. A simple way is to use the relation:

$$K = (\gamma - 1)mc^2 \longrightarrow \frac{K}{mc^2} = \gamma - 1.$$
(7)

We see that when $v \ll c$, then $\gamma \to 1$, which implies that the ratio K/mc^2 should be very small. Here, K = 1 eV and $mc^2 = 511$ keV, so indeed $K/mc^2 \ll 1$ and v must be much smaller than c; in other words, we are in the non-relativistic (classical) limit. In this limit, we have $K = p^2/2m \to p = \sqrt{2mK}$. We can make the math easier for ourselves by using $pc = \sqrt{2mc^2K}$. Now we can calculate the DeBoglie wavelength:

$$\lambda = \frac{h}{p} = \frac{hc}{pc} = \frac{1240 \text{ eV} \cdot \text{nm}}{\sqrt{2(5.11 \times 10^5 \text{ eV})(1 \text{ eV})}} = 1.23 \text{ nm}.$$
 (8)

Problem 2 The Davisson-Germer Experiment

If Davisson and Germer had used 100 volts to accelerate their electron beam instead of 54 volts, at which scattering angle ϕ would they have found a peak in the distribution of scattered electrons (the intensity)?

First calculate the wavelength of the electron. The kinetic energy K of an electron accelerated through a potential of 100 V is 100 eV. So, using the equation above we have:

$$\lambda = \frac{hc}{\sqrt{2mc^2K}} = \frac{1240 \text{ eV} \cdot \text{nm}}{\sqrt{2(5.11 \times 10^5 \text{ eV})(100 \text{ eV})}} = 0.123 \text{ nm}.$$
 (9)

Now we use the Davisson-Germer formula for first-order (n = 1) diffraction, $2d \sin \theta = \lambda = 0.123$ nm, where d = 0.091 nm is the distance between adjacent crystal planes in Ni. Now we an solve for θ , the angle between the original direction of the electron beam and scattered direction:

$$\theta = \sin^{-1}\left(\frac{\lambda}{2d}\right) = \sin^{-1}\left(\frac{0.123}{2 \cdot 0.091}\right) = 0.74 \text{ radians} = 42.52^{\circ}.$$
 (10)

Now θ is not the angle measured by Davisson and Germer. Rather, they measured $\phi = 180^{\circ} - 2\theta$, so in this case they would have measured $\phi = 180^{\circ} - 85.04 \simeq 95^{\circ}$. Parenthetically, this would have been tough to measure given their geometry.