Group Problems \#16 - Solutions

Friday, September 30

Problem 1

In lecture, we defined the intensity distribution for a double slit experiment:

$$
\begin{equation*}
I_{12}(x)=I_{1}(x)+I_{2}(x)+2 \sqrt{I_{1} I_{2}} \cos \delta \tag{1}
\end{equation*}
$$

where $I_{1,2}(x)$ corresponds to only one slit being open at a time, and δ is the phaseangle difference between waves emanating from each slit when both are open. This intensity pattern can be rewritten as:

$$
\begin{equation*}
I_{12}(x)=I_{0} \cos ^{2}(\delta / 2) \tag{2}
\end{equation*}
$$

where I_{0} is the intensity when $\delta=0$. A laser with wavelength $\lambda=532 \mathrm{~nm}$ (green) is directed at a double slit, producing an interference pattern described by Eq. 2. The intensity at the center of the pattern is measured to be $2.0 \mathrm{~W} / \mathrm{m}^{2}$.
(a) At what rate are photons detected at the center of the interference pattern?

First find the energy per photon:

$$
\begin{align*}
E_{\gamma}=\frac{h c}{\lambda} & =\frac{1240 \mathrm{eV}-\mathrm{nm}}{532 \mathrm{~nm}} \cdot 1.602 \times 10^{-19} \mathrm{~J} / \mathrm{eV} \tag{3}\\
& =3.73 \times 10^{-19} \mathrm{~J} / \text { photon } \tag{4}
\end{align*}
$$

At the center of the interference pattern, $\delta=0$, so $I_{12}(x=0)=I_{0}$. Using the fact that a Watt is 1 Joule/second $/$ meter $^{2}\left(1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s} / \mathrm{m}^{2}\right)$, we then have:

$$
\begin{equation*}
\frac{I_{0}}{E_{\gamma}}=\frac{2 \mathrm{~J} / \mathrm{s} / \mathrm{m}^{2}}{3.73 \times 10^{-19} \mathrm{~J} / \text { photon }}=5.36 \times 10^{18} \text { photons } / \mathrm{s} / \mathrm{m}^{2} \tag{5}
\end{equation*}
$$

(b) At what rate are photons detected when $\delta=\pi$?

Obviously, when $\delta=\pi$, then $\cos ^{2}(\pi / 2)=0$, so $I_{12}=0$.
(c) At what rate are photons detected at a point on the screen when the waves from the two sources are out of phase by $1 / 3$ of an oscillation cycle?
A full oscillation cycle corresponds to an angular period of 2π. The problem states that δ is $1 / 3$ of an oscillation cycle, so $\delta=2 \pi / 3$. So,

$$
\begin{equation*}
I_{12}=I_{0} \cos ^{2}(\pi / 3)=0.25 I_{0}=1.34 \times 10^{18} \text { photons } / \mathrm{s} / \mathrm{m}^{2} . \tag{6}
\end{equation*}
$$

