
Group Problems #11 - Solutions

Friday, September 16

Problem 1 A relativistic collision

A muon at rest and with massmµ = 106 MeV/c2, interacts with an incoming neutrino,
of energy Eν = 5 MeV and negligible mass. After the interaction, the emerging
particles are an electron (mass me = 0.511 MeV/c2) and a neutrino. The direction of
the outgoing neutrino makes an angle θ with that of the incoming one.
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Figure 1: Scattering Geometry.

(a) Choose an appropriate reference frame and write down the energy-momentum
invariant (E/c)2 − p2 of the system before the reaction occurs (p and E are the
total 3-momentum and energy before the reaction).

Given a particle of energy E and three-momentum p, the energy-momentum
four-vector is P = (E/c,p). For this specific problem, the four-momentum of the
muon is

Pµ = (mµc, 0, 0, 0), (1)
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since the muon is at rest in its own frame: the three-momentum is zero and the
energy is just its rest energy mµc

2. The incoming neutrino, which we choose
to travel in the +x direction, has negligible mass and energy Eν = 5 MeV. To
find the magnitude of the neutrino momentum pν , we use the energy-momentum
invariant E2

ν − p2
νc

2 = m2
νc

4, which is = 0 since the neutrino has zero mass. The
magnitude of the neutrino momentum is thus pν = Eν/c = 5 MeV/c. For a
particle of mass zero, the modulus of its momentum is always equal to its energy
over c. The neutrino then has four-momentum

Pν = (Eν/c, Eν/c, 0, 0). (2)

The four-momentum of the initial state (muon plus neutrino) is then

Pinitial = Pµ + Pν = (mµc+ Eν/c, Eν/c, 0, 0). (3)

Since Pinitial is the sum of two 4-vectors, it is also a 4-vector and it must therefore
have an associated invariant, or modulus; the energy-momentum invariant of the
initial system is thus:

P 2
initial = (mµc+ Eν/c)

2 − (Eν/c)
2 = m2

µc
2 + 2mµEν . (4)

(b) Write down the energy-momentum invariant after the reaction has occurred.

In the final state, there is an electron and a neutrino. The electron moves at an
unknown angle φ with respect to the direction of the incoming neutrino, so its
4-momentum is

Pe = (Ee/c, pe cosφ, pe sinφ, 0). (5)

The energy of the outgoing neutrino is E ′
ν , and the magnitude of its 3-momentum

is p′
ν = E ′

ν/c, so its 4-momentum is:

P ′
ν = (E ′

ν/c, (E
′
ν/c) cos θ,−(E ′

ν/c) sin θ, 0). (6)

The total 4-momentum of the final state is the sum of that for the electron and
neutrino:

Pfinal = Pe +P ′
ν = ((Ee +E ′

ν)/c, (E
′
ν/c) cos θ+ pe cosφ,−(E ′

ν/c) sin θ+ pe sinφ, 0).
(7)

Before computing P 2
final, we can simplify the expression for Pfinal. Starting from

Pinitial = Pfinal, each component must be conserved separately. Conserving the
x−component of the 3-momentum gives:

Eν/c = (E ′
ν/c) cos θ + pe cosφ. (8)

Conserving the y−component gives:

0 = −(E ′
ν/c) sin θ + pe sinφ. (9)

So Pfinal = ((Ee + E ′
ν)/c, Eν/c, 0, 0), and:

P 2
final = (Ee + E ′

ν)
2/c2 − (Eν/c)

2. (10)
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(c) Using the equality of this invariant before and after the reaction, find an expres-
sion for the momentum of the electron pe, assuming that θ = 0.

Because Pfinal = Pinitial then the associated invariants are also equal, P 2
final =

P 2
initial:

m2
µc

2 + 2mµEν = (Ee + E ′
ν)

2/c2 − (Eν/c)
2. (11)

We have two unknowns in the above equation, Ee and E ′
ν . Since we want to solve

for the three-momentum pe, we use the relation Ee =
√
p2
ec

2 +m2
ec

4 to eliminate
Ee and obtain

m2
µc

2 + 2mµEν = (
√
p2
ec

2 +m2
ec

4 + E ′
ν)

2/c2 − (Eν/c)
2. (12)

To get rid of E ′
ν , we use again the other equation on the conservation of the

three-momentum. We cannot use the conservation of the three-momentum in the
x direction immediatly, because this expression contains both E ′

ν and φ, which
is also unknown. So, we first solve for sinφ using the conservation of the three-
momentum in the y direction, obtaining

pe sinφ = (E ′
ν/c) sin θ. (13)

Using a trigonometric rule, we then write

pe cosφ =
√
p2
e − (E ′

ν/c)
2 sin2 θ. (14)

The conservation of three-momentum in the x direction is then

Eν/c = (E ′
ν/c) cos θ +

√
p2
e − (E ′

ν/c)
2 sin2 θ. (15)

This last equation can be written as a quadratic equation in E ′
ν . In fact, it can

be written as

Eν/c− (E ′
ν/c) cos θ =

√
p2
e − (E ′

ν/c)
2 sin2 θ, (16)

so when squared on both sides gives

(Eν/c)
2 − 2(EνE

′
ν/c

2) cos θ + (E ′
ν/c)

2 cos2 θ = p2
e − (E ′

ν/c)
2 sin2 θ, (17)

or
(E ′

ν/c)
2 − 2(EνE

′
ν/c

2) cos θ + (Eν/c)
2 − p2

e = 0. (18)

Solving for E ′
ν gives

E ′
ν = Eν cos θ +

√
p2
ec

2 − E2
ν sin2 θ. (19)

We only kept the “+′′ solution in the quadratic equation. The invariant interval
conservation in Eq. (12) with this expression for E ′

ν is

m2
µc

2 + 2mµEν =

(√
p2
ec

2 +m2
ec

4 + Eν cos θ +
√
p2
ec

2 − E2
ν sin2 θ

)2

c2
− E2

ν

c2
. (20)

This equation above can in principle be solved for pe to obtain the value of the
electron momentum at θ = 0.
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(d) Find an expression for pe, if the angle θ is arbitrary.

For arbitrary θ, such an expression is not easy to solve analytically and it’s best to
solve it numerically. This is generally beyond the scope of this class. However, for
completeness, the graph below shows pe vs. θ. As expected, the largest value of pe
occurs for θ = π, which corresponds to the neutrino bouncing straight backward
after the collision.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

53.00

53.01

53.02

53.03

53.04

Angle Θ HRadL

p
e
HM

eV
L

course name PS #


