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Chapter 28 Fluid Dynamics 
 
28.1 Ideal Fluids 
 
An ideal fluid is a fluid that is incompressible and no internal resistance to flow (zero 
viscosity). In addition ideal fluid particles undergo no rotation about their center of mass 
(irrotational). An ideal fluid can flow in a circular pattern, but the individual fluid 
particles are irrotational. Real fluids exhibit all of these properties to some degree, but we 
shall often model fluids as ideal in order to approximate the behavior of real fluids. When 
we do so, one must be extremely cautious in applying results associated with ideal fluids 
to non-ideal fluids.  
 
28.2 Velocity Vector Field 
 
When we describe the flow of a fluid like water, we may think of the movement of 
individual particles. These particles interact with each other through forces. We could 
then apply our laws of motion to each individual particle in the fluid but because the 
number of particles is very large, this would be an extremely difficult computation 
problem. Instead we shall begin by mathematically describing the state of moving fluid 
by specifying the velocity of the fluid at each point in space and at each instant in time. 
For the moment we will choose Cartesian coordinates and refer to the coordinates of a 
point in space by the ordered triple   (x, y, z)  and the variable  t  to describe the instant in 
time, but in principle we may chose any appropriate coordinate system appropriate for 
describing the motion. The distribution of fluid velocities is described by the vector 
values function     

v(x, y, z,t) . This represents the velocity of the fluid at the point   (x, y, z)  
at the instant  t . The quantity     

v(x, y, z,t)  is called the velocity vector field. It can be 
thought of at each instant in time as a collection of vectors, one for each point in space 
whose direction and magnitude describes the direction and magnitude of the velocity of 
the fluid at that point (Figure 28.1).  This description of the velocity vector field of the 
fluid refers to fixed points in space and not to fixed moving particles in the fluid.  
 

 
 

Figure 28.1: Velocity vector field for fluid flow at time  t  
 
We shall introduce functions for the pressure   P(x, y, z,t)  and the density   ρ(x, y, z,t)  of 
the fluid that describe the pressure and density of the fluid at each point in space and at 
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each instant in time. These functions are called scalar fields because there is only one 
number with appropriate units associated with each point in space at each instant in time. 
 
In order to describe the velocity vector field completely we need three functions 

  vx (x, y, z,t) ,   
vy (x, y, z,t) , and   vz (x, y, z,t) . For a non-ideal fluid, the differential 

equations satisfied by these velocity component functions are quite complicated and 
beyond the scope of this discussion. Instead, we shall primarily consider the special case 
of steady flow of a fluid in which the velocity at each point in the fluid does not change 
in time. The velocities may still vary in space (non-uniform steady flow). 
 
Let’s trace the motion of particles in an ideal fluid undergoing steady flow during a 
succession of intervals of duration  dt .  
 

 
 

 
 

Figure 28.2: (a) trajectory of particle 1, (b) trajectory of particle 2 
 
Consider particle 1 located at point  A  with coordinates   (xA, yA, zA) . At the instant   t1 , 
particle 1 will have velocity     

v(xA, yA, zA)  and move to a point  B  with coordinates 

  (xB , yB , zB ) , arriving there at the instant   t2 = t1 + dt . During the next interval, particle 1 
will move to point  C  arriving there at instant   t3 = t2 + dt , where it has velocity 

    
v(xB , yB , zB )  (Figure 28.2(a)). Because the flow has been assumed to be steady, at instant 

  t2 , a different particle, particle 2, is now located at point  A  but it has the same velocity 

    
v(xA, yA, zA)  as particle 1 had at point  A  and hence will arrive at point  B  at the end of 
the next interval, at the instant   t3 = t2 + dt  (Figure 28.2(b)). In the third interval, particle 2, 
which began the interval at point  B  will end the interval at point  C . In this way every 
particle that lies on the trajectory that our first particle traces out in time will follow the 
same trajectory. This trajectory is called a streamline. The particles in the fluid will not 
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have the same velocities at points along a streamline because we have not assumed that 
the velocity field is uniform.  
 
28.3 Mass Continuity Equation 
 
A set of streamlines for an ideal fluid undergoing steady flow in which there are no 
sources or sinks for the fluid is shown in Figure 28.3. 
 

 
 

Figure 28.3: Set of streamlines for an 
ideal fluid flow 

 

 
 

Figure 28.4: Flux Tube associated with 
set of streamlines 

 
We also show a set of closely separated streamlines that form a flow tube in Figure 28.4 
We add to the flow tube two open surface (end-caps 1 and 2) that are perpendicular to 
velocity of the fluid, of areas   A1  and   A2 , respectively. Because all fluid particles that 
enter end-cap 1 must follow their respective streamlines, they must all leave end-cap 2. If 
our streamlines that form the tube are sufficiently close together, we can assume that the 
velocity of the fluid in the vicinity of each end-cap surfaces is uniform.  
 

 
 

Figure 28.5: Mass flow through flux tube 
 
Let   v1  denote the speed of the fluid near end-cap 1 and   v2  denote the speed of the fluid 
near end-cap 2. Let  ρ1  denote the density of the fluid near end-cap 1 and  ρ2  denote the 
density of the fluid near end-cap 2. The amount of mass that enters and leaves the tube in 
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a time interval  dt  can be calculated as follows (Figure 28.5): suppose we consider a 
small volume of space of cross-sectional area   A1  and length   dl1 = v1dt  near end-cap 1. 
The mass that enters the tube in time interval  dt  is  
 
   dm1 = ρ1dV1 = ρ1A1dl1 = ρ1A1v1dt  . (28.3.1) 
 
In a similar fashion, consider a small volume of space of cross-sectional area   A2  and 
length   dl2 = v2dt  near end-cap 2. The mass that leaves the tube in the time interval  dt  is 
then  
   dm2 = ρ2dV2 = ρ2 A2dl2 = ρ2 A2v2dt  . (28.3.2) 
 
An equal amount of mass that enters end-cap 1 in the time interval  dt  must leave end-cap 
2 in the same time interval, thus   dm1 = dm2 . Therefore using Eqs. (28.3.1) and (28.3.2), 
we have that   ρ1A1v1dt = ρ2 A2v2dt . Dividing through by  dt  implies that  
 
   ρ1A1v1 = ρ2 A2v2 (steady flow)  . (28.3.3) 
 
Eq. (28.3.3) generalizes to any cross sectional area  A  of the thin tube, where the density 
is ρ , and the speed is  v ,  
   ρAv = constant (steady flow)  . (28.3.4) 
 
Eq. (28.3.3) is referred to as the mass continuity equation for steady flow. If we assume 
the fluid is incompressible, then Eq. (28.3.3) becomes 
 
   A1v1 = A2v2 (incompressable fluid, steady flow)  . (28.3.5) 
 
Consider the steady flow of an incompressible with streamlines and closed surface 
formed by a streamline tube shown in Figure 28.5. According to Eq. (28.3.5), when the 
spacing of the streamlines increases, the speed of the fluid must decrease. Therefore the 
speed of the fluid is greater entering end-cap 1 then when it is leaving end-cap 2. When 
we represent fluid flow by streamlines, regions in which the streamlines are widely 
spaced have lower speeds than regions in which the streamlines are closely spaced. 
 
 
28.4 Bernoulli’s Principle 
 
Let’s again consider the case of an ideal fluid that undergoes steady flow and apply 
energy methods to find an equation of state that relates pressure, density, and speed of the 
flow at different points in the fluid. Let’s examine the case of a steady horizontal flow in 
as seen in the overhead view shown in Figure 28.6. We represent this flow by streamlines 
and a flow tube associated with the streamlines. Let’s consider the motion of a fluid 
particle along one streamline passing through points  A  and  B  in Figure 28.6. The cross-
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sectional area of the flow tube at point  A  is less than the cross-sectional area of the flow 
tube at point  B . 
 

  
 

Figure 28.6 Overhead view of steady horizontal flow: in regions where spacing of the 
streamlines increases, the speed of the fluid must decrease 

 
According to Eq. (28.3.5), the particle located at point  A has a greater speed than a fluid 
particle located at point  B . Therefore a particle traveling along the streamline from point 
 A  to point  B  must decelerate. Because the streamline is horizontal, the force 
responsible is due to pressure differences in the fluid. Thus, for this steady horizontal 
flow in regions of lower speed there must be greater pressure than in regions of higher 
speed.  
 
Now suppose the steady flow of the ideal fluid is not horizontal, with the  y -representing 
the vertical directi. The streamlines and flow tube for this steady flow are shown in 
Figure 28.7.  
 

 
 

Figure 28.7: Non-horizontal steady flow 
 
In order to determine the equation relating the pressure, speed and height difference of 
the tube, we shall use the work-energy theorem. We take as a system the mass contained 
in the flow tube shown in Figure 28.7. The external forces acting on our system are due 
to the pressure acting at the two ends of the flow tube and the gravitational force. 
Consider a streamline passing through points  1  and  2  at opposite ends of the flow tube. 
Let’s assume that the flow tube is narrow enough such that the velocity of the fluid is 



 28-6 

uniform on the cross-sectional areas of the tube at points  1  and  2 . At point  1 , denote the 
speed of a fluid particle by   v1 , the cross-sectional area by   A1 , the fluid pressure by   P1 , 
and the height of the center of the cross-sectional area by   y1 . At point  2 , denote the 
speed of a fluid particle by   v2 , the cross-sectional area by   A2 , the fluid pressure by   P2 , 
and the height of the center of the cross-sectional area by   y2 .  
 
Consider the flow tube at time  t  as illustrated in Figure 28.7. At the left end of the flow, 
in a time interval  dt , a particle at point  1  travels a distance   dl1 = v1dt . Therefore a small 
volume   dV1 = A1dl1 = A1v1dt  of fluid is displaced at the right end of the flow tube. In a 
similar fashion, at particle at point  2 , travels a distance   dl2 = v2dt . Therefore a small 
volume of fluid   dV2 = A2dl2 = A2v2dt  is also displaced to the right in the flow tube during 
the time interval  dt . Because we are assuming the fluid is incompressible, by Eq.(28.3.5), 
these volume elements are equal,   dV ≡ dV1 = dV2 .   
 
There is a force of magnitude   F1 = P1A1  in the direction of the flow arising from the fluid 
pressure at the left end of the tube acting on the mass element that enters the tube. The 
work done displacing the mass element is then 
 
   dW1 = F1dl1 = P1A1dl1 = P1dV  . (28.4.1) 
  
There is also a force of magnitude   F2 = P2 A2  in the direction opposing the flow arising 
from the fluid pressure at the right end of the tube. The work done opposing the 
displacement of the mass element leaving the tube is then 
 
   dW1 = −F2dl2 = −P2 A2dl2 = −P2dV  . (28.4.2) 
 
Therefore the external work done by the force associated with the fluid pressure is the 
sum of the work done at each end of the tube 
 
   dW ext = dW1 + dW2 = (P1 − P2 )dV  . (28.4.3) 
 
In a time interval  dt , the work done by the gravitational force is equal to  
 
   dW g = −dm g( y2 − y1) = −ρdVg( y2 − y1)  . (28.4.4) 
	  
Because we only chose the mass in the flow tube as our system, and we assumed that the 
fluid was ideal (no frictional losses due to viscosity) the change in the potential energy of 
the system is 
   dU = −W g = ρdVg( y2 − y1)  . (28.4.5) 
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At time  t , the kinetic energy of the system is the sum of the kinetic energy of the small 
mass element of volume   dV = A1dl1  moving with speed   v1  and the rest of the mass in the 
flow tube. At time  t + dt , the kinetic energy of the system is the sum of the kinetic energy 
of the small mass element of volume   dV = A2dl2  moving with speed   v2  and the rest of 
the mass in the flow tube. The change in the kinetic energy of the system is due to the 
mass elements at the two ends and therefore 
 

 
  
dK = 1

2
dm2v2

2 − 1
2

dm1v1
2 = 1

2
ρdV (v2

2 − v1
2 )  . (28.4.6) 

 
The work-energy theorem  dW ext = dU + dK  for system is then 
 

 
  
(P1 − P2 )dV = 1

2
ρdV (v2

2 − v1
2 )+ ρg( y2 − y1)dV  . (28.4.7) 

 
We now divide Eq. (28.4.7) through by the volume  dV  and rearrange terms, yielding 
 

 
  
P1 + ρgy1 +

1
2
ρv1

2 = P2 + ρgy2 +
1
2
ρv2

2  . (28.4.8) 

 
Because points  1  and  2  were arbitrarily chosen, we can drop the subscripts and write  
Eq. (28.4.8) as 

 
  
P + ρgy + 1

2
ρv2 = constant (ideal fluid, steady flow)  . (28.4.9) 

 
Eq. (28.4.9) is known as Bernoulli’s Equation. 
 
28.5 Worked Examples: Bernoulli’s Equation 
 
Example 28.1 Venturi Meter 
 
Figure 28.8 shows a Venturi Meter, a device used to measure the speed of a fluid in a 
pipe. A fluid of density  

ρ f  is flowing through a pipe. A U-shaped tube partially filled 

with mercury of density 
 
ρHg  lies underneath the points 1 and 2.  
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Figure 28.8: Venturi Meter 
 
The cross-sectional areas of the pipe at points 1 and 2 are   A1  and   A2  respectively. 
Determine an expression for the flow speed at the point 1 in terms of the cross-sectional 
areas   A1  and   A2 , and the difference in height  h  of the liquid levels of the two arms of 
the U-shaped tube.  
 
Solution:  
 

 
 

Figure 28.8: Coordinate system for Venturi tube 
 
We shall assume that the pressure and speed are constant in the cross-sectional areas   A1  
and   A2 . We also assume the fluid is incompressible so the density  

ρ f  is constant 
throughout the tube. 

 
The two points 1 and 2 lie on the streamline passing through the 

midpoint of the tube so they are at the same height. Using   y1 = y2  in Eq. (28.4.8), the 
pressure and flow speeds at the two points 1 and 2 are related by 
 

 
  
P1 +

1
2
ρ f v1

2 = P2 +
1
2
ρ f v2

2  . (28.4.10) 
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We can rewrite Eq. (28.4.10) as 

 
  
P1 − P2 =

1
2
ρ f (v2

2 − v1
2 )  . (28.4.11) 

 
Let   h1  and   h2  denote the heights of the liquid level in the arms of the U-shaped tube 
directly beneath points 1 and 2 respectively.  Pascal’s Law relates the pressure difference 
between the two arms of the U-shaped tube according to in the left arm of the U-shaped 
tube according to 
   

Pbottom = P1 + ρ f gd1 + ρHg gh1  . (28.4.12) 
 
In a similar fashion, the pressure at point 2 is given by 
 
   

Pbottom = P2 + ρ f gd2 + ρHg gh2  . (28.4.13) 
 
Therefore, setting Eq. (28.4.12) equal to Eq. (28.4.13), we determine that the pressure 
difference on the two sides of the U-shaped tube is 
 
   

P1 − P2 = ρ f g(d2 − d1)+ ρHg g(h2 − h1).  (28.4.14) 
 
From Figure 28.8,   d2 + h2 = d1 + h1 , therefore   d2 − d1 = h1 − h2 = −h . We can rewrite  
Eq. (28.4.14) as 
   

P1 − P2 = (ρHg − ρ f )gh. (28.4.15) 
 
Substituting Eq. (28.4.11) into Eq. (28.4.15) yields 
 

 
  

1
2
ρ f (v2

2 − v1
2 ) = (ρHg − ρ f )gh  . (28.4.16) 

 
The mass continuity condition (Eq.(28.3.5)) implies that   v2 = ( A1 / A2 )v1  and so we can 
rewrite Eq. (28.4.16) as 

 
  

1
2
ρ f (( A1 / A2 )2 −1)v1

2 = (ρHg − ρ f )gh  . (28.4.17) 

 
We can now solve Eq. (28.4.17) for the speed of the flow at point 1;  
 

 
  
v1 =

2(ρHg − ρ f )gh
ρ f (( A1 / A2 )2 −1)

 . (28.4.18) 
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Example 28.2 Water Pressure  
 
A cylindrical water tower of diameter  3.0 m  supplies water to a house. The level of 
water in the water tower is  35 m   above the point where the water enters the house 
through a pipe that has an inside diameter  5.1cm . The intake pipe delivers water at a 
maximum rate of  2.0×10−3 m3 ⋅s−1 . The pipe is connected to a narrower pipe leading to 
the second floor that has an inside diameter  2.5 cm . What is the pressure and speed of the 
water in the narrower pipe at a point that is a height  5.0 m  above the level where the pipe 
enters the house?  
 

 
 

Figure 28.9: Example 28.2 (not to scale) 
 
Solution: We shall assume that the water is an ideal fluid and that the flow is a steady 
flow and that the level of water in the water tower is constantly maintained. Let’s choose 
three points, point 1 at the top of the water in the tower, point 2 where the water just 
enters the house, and point 3 in the narrow pipe at a height   h2 = 5.0 m  above the level 
where the pipe enters the house.  
 
We begin by applying Bernoulli’s Equation to the flow from the water tower at point 1, 
to where the water just enters the house at point 2. Bernoulli’s equation (Eq. (28.4.8)) 
tells us that 

 
  
P1 + ρgy1 +

1
2
ρv1

2 = P2 + ρgy2 +
1
2
ρv2

2  . (28.4.19) 
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We assume that the speed of the water at the top of the tower is negligibly small due to 
the fact that the water level in the tower is maintained at the same height and so we set 

  v1 = 0 . The pressure at point 2 is then  
 

 
  
P2 = P1 + ρg( y1 − y2 )− 1

2
ρv2

2  . (28.4.20) 

 
In Eq. (28.4.20) we use the value for the density of water  ρ = 1.0×103 kg ⋅m−3 , the 
change in height is   ( y1 − y2 ) = 35 m , and the pressure at the top of the water tower is 

  P1 = 1atm . The rate  R  that the water flows at point 1 satisfies   R = A1v1 = π (d1 / 2)2 v1 . 
Therefore, the speed of the water at point 1 is 
 

 
  
v1 =

R
π (d1 / 2)2 = 2.0×10−3 m3 ⋅s−1

π (1.5 m)2 = 2.8×10−4 m ⋅s−1 , (28.4.21) 

 
which is negligibly small and so we are justified in setting   v1 = 0 . Similarly the speed of 
the water at point 2 is 
 

 
  
v2 =

R
π (d2 / 2)2 = 2.0×10−3 m3 ⋅s−1

π (2.5×10−2 m)2 = 1.0 m ⋅s−1 , (28.4.22) 

 
We can substitute Eq. (28.4.21) into Eq. (28.4.22), yielding 
 
   v2 = (d1

2 / d2
2 )v1 , (28.4.23) 

 
a result which we will shortly find useful. Therefore the pressure at point 2 is 
 

  

P2 = 1.01×105 Pa + (1.0×103 kg ⋅m−3)(9.8 m ⋅s−2 )(35 m)− 1
2

(1.0×103 kg ⋅m−3)(1.0 m ⋅s−1)2

P2 = 1.01×105 Pa + 3.43×105 Pa −5.1×102 Pa = 4.4×105 Pa
 

. (28.4.24) 
 
The dominant contribution is due to the height difference between the top of the water 
tower and the pipe entering the house. The quantity   (1/ 2)ρv2

2  is called the dynamic 
pressure due to the fact that the water is moving. The amount of reduction in pressure 
due to the fact that the water is moving at point 2 is given by 
 

 
  
1
2
ρv2

2 = 1
2

(1.0×103 kg ⋅m−3)(1.0 m ⋅s−1)2 = 5.1×103 Pa ,  (28.4.25) 
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which is much smaller than the contributions from the other two terms.  
 
We now apply Bernoulli’s Equation to the points 2 and 3, 
 

 
  
P2 +

1
2
ρv2

2 + ρgy2 = P3 +
1
2
ρv3

2 + ρgy3  . (28.4.26) 

 
Therefore the pressure at point 3 is 
 

 
  
P3 = P2 +

1
2
ρ(v2

2 − v3
2 )+ ρg( y2 − y3)  . (28.4.27) 

 
The change in height   y2 − y3 = −5.0 m . The speed of the water at point 3 is 
 

 
  
v3 =

R
π (d3 / 2)2 = 2.0×10−3 m3 ⋅s−1

π (1.27 ×10−2 m)2 = 3.9 m ⋅s−1 , (28.4.28) 

 
Then the pressure at point 3 is 
 

 

  

P3 = (4.4×105 Pa)+ 1
2

(1.0×103 kg ⋅m−3)((1.0 m ⋅s−1)2 − (3.9 m ⋅s−1)2 )

−(1.0×103 kg ⋅m−3)(9.8 m ⋅s−2 )(5.0 m)

= (4.4×105 Pa)− (7.1×103 Pa)− 4.9×104 Pa
= 3.8×105 Pa

 . (28.4.29) 

 
Because the speed of the water at point 3 is much greater than at point 2, the dynamic 
pressure contribution at point 3 is much larger than at point 2. 
 
 


