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Chapter 6 Circular Motion 
 

And the seasons they go round and round  
And the painted ponies go up and down  
We're captive on the carousel of time  
We can't return we can only look  
Behind from where we came  
And go round and round and round  
In the circle game 1 

 
       Joni Mitchell 

6.1 Introduction 
 
Special cases often dominate our study of physics, and circular motion is certainly no 
exception. We see circular motion in many instances in the world; a bicycle rider on a 
circular track, a ball spun around by a string, and the rotation of a spinning wheel are just 
a few examples. Various planetary models described the motion of planets in circles 
before any understanding of gravitation. The motion of the moon around the earth is 
nearly circular. The motions of the planets around the sun are nearly circular. Our sun 
moves in nearly a circular orbit about the center of our galaxy, 50,000 light years from a 
massive black hole at the center of the galaxy. 
 
 We shall describe the kinematics of circular motion, the position, velocity, and 
acceleration, as a special case of two-dimensional motion. We will see that unlike linear 
motion, where velocity and acceleration are directed along the line of motion, in circular 
motion the direction of velocity is always tangent to the circle. This means that as the 
object moves in a circle, the direction of the velocity is always changing. When we 
examine this motion, we shall see that the direction of change of the velocity is towards 
the center of the circle. This means that there is a non-zero component of the acceleration 
directed radially inward, which is called the centripetal acceleration. If our object is 
increasing its speed or slowing down, there is also a non-zero tangential acceleration in 
the direction of motion. But when the object is moving at a constant speed in a circle then 
only the centripetal acceleration is non-zero. 
 
 In all of these instances, when an object is constrained to move in a circle, there 
must exist a force F


 acting on the object directed towards the center.  

 
 In 1666, twenty years before Newton published his Principia, he realized that the 
moon is always “falling” towards the center of the earth; otherwise, by the First Law, it 
would continue in some linear trajectory rather than follow a circular orbit. Therefore 
there must be a centripetal force, a radial force pointing inward, producing this 
centripetal acceleration.  
 
                                                
1 Joni Mitchell, The Circle Game, Siquomb Publishing Company. 
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 Because Newton’s Second Law m=F a
   is a vector equality, it can be applied to 

the radial direction to yield 
  Fr = mar . (6.1.1) 
 

6.2 Cylindrical Coordinate System 

We first choose an origin and an axis we call the  z -axis with unit vector   k̂  pointing in 
the increasing z-direction. The level surface of points such that  z = zP  define a plane. We 
shall choose coordinates for a point  P  in the plane  z = zP  as follows.  
  
 One coordinate,  r , measures the distance from the  z -axis to the point  P . The 
coordinate  r  ranges in value from   0 ≤ r ≤ ∞ . In Figure 6.1 we draw a few surfaces that 
have constant values of  r . These `level surfaces’ are circles.  
 

 
 

Figure 6.1 level surfaces for the coordinate  r  
 
 Our second coordinate measures an angular distance along the circle. We need to 
choose some reference point to define the angle coordinate. We choose a ‘reference ray’, 
a horizontal ray starting from the origin and extending to +∞  along the horizontal 
direction to the right. (In a typical Cartesian coordinate system, our ‘reference ray’ is the 
positive x-direction). We define the angle coordinate for the point  P  as follows. We 
draw a ray from the origin to the point  P . We define the angle θ  as the angle in the 
counterclockwise direction between our horizontal reference ray and the ray from the 
origin to the point  P , (Figure 6.2). All the other points that lie on a ray from the origin to 
infinity passing through  P  have the same value as θ . For any arbitrary point, our angle 
coordinate θ  can take on values from  0 ≤θ < 2π .  In Figure 6.3 we depict other `level 
surfaces’, which are lines in the plane for the angle coordinate. The coordinates   (r,θ)  in 
the plane  z = zP  are called polar coordinates. 
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Figure 6.2 the angle coordinate 

 
 

Figure 6.3 Level surfaces for the angle 
coordinate 

 

6.2.1 Unit Vectors 
We choose two unit vectors in the plane at the point  P  as follows. We choose   ̂r  to point 
in the direction of increasing  r , radially away from the z-axis. We choose  θ̂  to point in 
the direction of increasing θ . This unit vector points in the counterclockwise direction, 
tangent to the circle. Our complete coordinate system is shown in Figure 6.4. This 
coordinate system is called a ‘cylindrical coordinate system’. Essentially we have chosen 
two directions, radial and tangential in the plane and a perpendicular direction to the 
plane. If we are given polar coordinates   (r,θ)  of a point in the plane, the Cartesian 
coordinates   (x, y)  can be determined from the coordinate transformations 
 
   x = r cosθ ,  (6.2.1) 
   y = r sinθ .  (6.2.2) 

 
 

Figure 6.4 Cylindrical coordinates 
 

 
 
 

 
 
 

Figure 6.5 Unit vectors at two different 
points in polar coordinates.
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Conversely, if we are given the Cartesian coordinates   (x, y) , the polar coordinates   (r,θ)  
can be determined from the coordinate transformations 
 
   r = +(x2 + y2 )1 2 ,  (6.2.3) 
   θ = tan−1( y / x) .  (6.2.4) 
 
Note that   r ≥ 0  so we always need to take the positive square root. Note also that 
 tanθ = tan(θ + π ) . Suppose that 0 / 2θ π≤ ≤ , then   x ≥ 0  and   y ≥ 0 . Then the point 

  (−x,− y)  will correspond to the angle θ + π . 
 
 The unit vectors also are related by the coordinate transformations  
 
   ̂r = cosθ î + sinθ ĵ ,  (6.2.5) 
   θ̂ = −sinθ î + cosθ ĵ .  (6.2.6) 
Similarly  
   î = cosθ r̂ − sinθ θ̂ ,  (6.2.7) 
   ĵ= sinθ r̂ + cosθ θ̂ .  (6.2.8) 
 
 One crucial difference between polar coordinates and Cartesian coordinates 
involves the choice of unit vectors.  Suppose we consider a different point  S  in the plane. 
The unit vectors in Cartesian coordinates ˆ ˆ( , )S Si j  at the point  S  have the same magnitude 

and point in the same direction as the unit vectors ˆ ˆ( , )P Pi j  at P . Any two vectors that are 
equal in magnitude and point in the same direction are equal; therefore  
 
 ˆ ˆ ˆ ˆ,S P S P= =i i j j . (6.2.9) 

 
 A Cartesian coordinate system is the unique coordinate system in which the set of 
unit vectors at different points in space are equal.  In polar coordinates, the unit vectors at 
two different points are not equal because they point in different directions. We show this 
in Figure 6.5. 
 
6.2.2 Infinitesimal Line, Area, and Volume Elements in Cylindrical Coordinates 

 
Consider a small infinitesimal displacement d s  between two points P1 and P2  (Figure 
6.6). This vector can be decomposed into  
 
     d

s = dr r̂ + rdθ θ̂ + dz k̂ . (6.2.10) 
 
Consider an infinitesimal area element on the surface of a cylinder of radius  r  (Figure 
6.7). The area of this element has magnitude 
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  dA = rdθdz . (6.2.11) 
 
Area elements are actually vectors where the direction of the vector dA


 points 

perpendicular to the plane defined by the area. Since there is a choice of direction, we 
shall choose the area vector to always point outwards from a closed surface. So for the 
surface of the cylinder, the infinitesimal area vector is 
 
     d


A = rdθdz r̂ . (6.2.12) 

 
 
 

 
 
 

Figure 6.6 Displacement vector d s  
between two points 

 

 
Figure 6.7 Area element for a cylinder: 

normal vector   ̂r  

 
Example 6.1 Area Element of Disk 

 
Consider an infinitesimal area element on the surface of a disc (Figure 6.8) in the  xy -
plane. 

 
 

 
 

Figure 6.8 Area element for a disc: 
normal k̂  

 
 

Figure 6.9 Volume element 
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Solution: The area element is given by the vector 
 
 ˆd rd drθ=A k


. (6.2.13) 

 
An infinitesimal volume element (Figure 6.9) is given by 
 
  dV = rdθ dr dz . (6.2.14) 
 
 The motion of objects moving in circles motivates the use of the cylindrical 
coordinate system. This is ideal, as the mathematical description of this motion makes 
use of the radial symmetry of the motion. Consider the central radial point and a vertical 
axis passing perpendicular to the plane of motion passing through that central point. Then 
any rotation about this vertical axis leaves circles invariant (unchanged), making this 
system ideal for use for analysis of circular motion exploiting of the radial symmetry of 
the motion. 
 

6.3 Circular Motion: Velocity and Angular Velocity 
 
We can now begin our description of circular motion. In Figure 6.10 we sketch the 
position vector ( )tr  of the object moving in a circular orbit of radius  r . At time  t , the 
particle is located at the point  P  with coordinates   (r,θ(t))  and position vector given by 
 
  

r(t) = r r̂(t) . (6.3.1) 

 

 
 

Figure 6.10 A circular orbit. 
 

 
 

Figure 6.11 Unit vectors

At the point  P , consider two sets of unit vectors (   ̂r(t) ,  θ̂(t) ) and ( î , ĵ ). In Figure 6.11 
we see that a vector decomposition expression for    ̂r(t)  and   θ̂(t)  in terms of î  and ĵ  is 
given by 
    ̂r(t) = cosθ(t) î + sinθ(t) ĵ ,  (6.3.2) 
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    θ̂(t) = −sinθ(t) î + cosθ(t) ĵ .  (6.3.3) 
 
We can write the position vector as 
 
  

r(t) = r r̂(t) = r(cosθ(t) î + sinθ(t) ĵ) . (6.3.4) 
The velocity is then 
 

 

v(t) = dr(t)
dt

= r d
dt
(cosθ(t) î + sinθ(t) ĵ) = r(− sinθ(t) dθ(t)

dt
î + cosθ(t) dθ(t)

dt
ĵ) ,  (6.3.5) 

 
where we used the chain rule to calculate that 
 

 d
dt
cosθ(t) = −sinθ(t) dθ(t)

dt
, (6.3.6) 

 d
dt
sinθ(t) = cosθ(t) dθ(t)

dt
. (6.3.7) 

 
We now rewrite Eq. (6.3.5) as 
 

 
 

v(t) = r dθ(t)
dt

(− sinθ(t)î + cosθ(t) ĵ) . (6.3.8) 

 
Finally we substitute Eq. (6.3.3) into Eq. (6.3.8) and obtain an expression for the velocity 
of a particle in a circular orbit 

 
 

v(t) = r dθ(t)
dt

θ̂(t) . (6.3.9) 

 
We denote the rate of change of angle with respect to time by the Greek letter ω ,  
 

 
 
ω ≡

dθ
dt

, (6.3.10) 

 
which can be positive (counterclockwise rotation in Figure 6.10), zero (no rotation), or 
negative (clockwise rotation in Figure 6.10). This is often called the angular speed but it 
is actually the  z -component of a vector called the angular velocity vector.  
 

 
    


ω =

dθ
dt

k̂ =ω k̂ . (6.3.11) 

 
The SI units of angular velocity are  [rad ⋅ s−1] . Thus the velocity vector for circular 
motion is given by 
  

v(t) = rω θ̂(t) ≡ vθ θ̂(t) , (6.3.12) 
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where the θ̂ -component of the velocity is given by 
 

 vθ = r
dθ
dt

. (6.3.13) 

 
We shall call vθ  the tangential component of the velocity. 
 
6.3.1 Geometric Derivation of the Velocity for Circular Motion 

 
Consider a particle undergoing circular motion. At time  t , the position of the particle is 
 
r(t) . During the time interval  Δt , the particle moves to the position     

r(t + Δt) with a 
displacement   Δ

r .  

 
 

Figure 6.12 Displacement vector for circular motion 
 
The magnitude of the displacement, Δr , is represented by the length of the horizontal 
vector Δr  joining the heads of the displacement vectors in Figure 6.12 and is given by 
 

    
Δr = 2r sin(Δθ / 2) . (6.3.14) 

 
When the angle θΔ  is small, we can approximate 
 sin( / 2) / 2θ θΔ ≅ Δ . (6.3.15) 
 
This is called the small angle approximation, where the angle θΔ  (and hence / 2θΔ ) is 
measured in radians. This fact follows from an infinite power series expansion for the 
sine function given by  

 
3 51 1sin

2 2 3! 2 5! 2
θ θ θ θΔ Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − ⋅⋅⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 . (6.3.16) 

 
When the angle / 2θΔ  is small, only the first term in the infinite series contributes, as 
successive terms in the expansion become much smaller. For example, when 

/ 2 / 30 0.1θ πΔ = ≅ , corresponding to 6o, 3 4( / 2) / 3! 1.9 10θ −Δ ≅ × ; this term in the power 
series is three orders of magnitude smaller than the first and can be safely ignored for 
small angles. 
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 Using the small angle approximation, the magnitude of the displacement is 
 
 

   
Δr ≅ r Δθ . (6.3.17) 

 
This result should not be too surprising since in the limit as Δθ  approaches zero, the 
length of the chord approaches the arc length  r Δθ .  

 
 The magnitude of the velocity, 

   
v ≡ v , is then seen to be proportional to the rate 

of change of the magnitude of the angle with respect to time, 
 

 
    
v ≡ v = lim

Δt→0

Δr
Δt

= lim
Δt→0

r Δθ
Δt

= r lim
Δt→0

Δθ
Δt

= r dθ
dt

= r ω . (6.3.18) 

 
The direction of the velocity can be determined by considering that in the limit as 

  Δt → 0  (note that  Δθ → 0 ), the direction of the displacement   Δ
r  approaches the 

direction of the tangent to the circle at the position of the particle at time  t  (Figure 6.13).  
 

 
 

Figure 6.13 Direction of the displacement approaches the direction of the tangent line 
 
Thus, in the limit   Δt → 0 ,   Δ

r ⊥ r , and so the direction of the velocity     
v(t)  at time  t  is 

perpendicular to the position vector     
r(t)  and tangent to the circular orbit in the  +θ̂ -

direction for the case shown in Figure 6.13. 
 
6.4 Circular Motion: Tangential and Radial Acceleration 
 
When the motion of an object is described in polar coordinates, the acceleration has two 
components, the tangential component  aθ , and the radial component,  ar . We can write 
the acceleration vector as 
     

a = ar r̂(t) + aθ θ̂(t) . (6.4.1) 
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Keep in mind that as the object moves in a circle, the unit vectors    ̂r(t)  and   θ̂(t)  change 
direction and hence are not constant in time.  
 
 We will begin by calculating the tangential component of the acceleration for 
circular motion. Suppose that the tangential velocity  vθ = rω  is changing in magnitude 
due to the presence of some tangential force, where ω  is the  z -component of the angular 
velocity; we shall now consider that ω (t)  is changing in time, (the magnitude of the 
velocity is changing in time). Recall that in polar coordinates the velocity vector Eq. 
(6.3.12) can be written as  
  

v(t) = rω θ̂(t) . (6.4.2) 
 
We now use the product rule to determine the acceleration. 
 

 
 

a(t) = dv(t)
dt

= r dω (t)
dt

θ̂(t) + rω (t) dθ̂(t)
dt

. (6.4.3) 

 
Recall from Eq. (6.3.3) that θ̂(t) = − sinθ(t)î + cosθ(t) ĵ . So we can rewrite Eq. (6.4.3) as 
 

 
 

a(t) = r dω (t)
dt

θ̂(t) + rω (t) d
dt
(− sinθ(t)î + cosθ(t) ĵ) . (6.4.4) 

 
We again use the chain rule (Eqs. (6.3.6) and (6.3.7)) and find that 
 

 
 

a(t) = r dω (t)
dt

θ̂(t) + rω (t) − cosθ(t) dθ(t)
dt

î − sinθ(t) dθ(t)
dt

ĵ⎛
⎝⎜

⎞
⎠⎟ . (6.4.5) 

 
Recall that   ω ≡ dθ / dt , and from Eq. (6.3.2),    ̂r(t) = cosθ(t) î + sinθ(t) ĵ , therefore the 
acceleration becomes 

 
 

a(t) = r dω (t)
dt

θ̂(t) − rω 2 (t) r̂(t) . (6.4.6) 

 
We denote the rate of change of ω  with respect to time by the Greek letter α ,  
 

 
 
α ≡

dω
dt

, (6.4.7) 

 
which can be positive, zero, or negative. This is often called the angular acceleration but 
it is actually the  z -component of a vector called the angular acceleration vector.  
 

 
    


α =

dω
dt

k̂ =
d 2θ
dt2 k̂ ≡ α k̂ . (6.4.8) 
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The SI units of angular acceleration are  [rad ⋅ s−2 ] . The tangential component of the 
acceleration is then 
 
  aθ = rα . (6.4.9) 
 
The radial component of the acceleration is given by  
 
   ar = −rω 2 < 0 . (6.4.10) 
 
Because   ar < 0 , that radial vector component     

a r (t) = −rω 2 r̂(t)  is always directed 
towards the center of the circular orbit. 
 
6.5 Period and Frequency for Uniform Circular Motion 

 
If the object is constrained to move in a circle and the total tangential force acting on the 
object is zero, total 0Fθ = . By Newton’s Second Law, the tangential acceleration is zero, 
 
 0aθ = . (6.5.1) 
 
This means that the magnitude of the velocity (the speed) remains constant. This motion 
is known as uniform circular motion. The acceleration is then given by only the 
acceleration radial component vector 
 
    

ar (t) = −rω 2 (t) r̂(t) uniform circular motion . (6.5.2) 
 
Since the speed  

v = r ω  is constant, the amount of time that the object takes to complete 
one circular orbit of radius  r  is also constant. This time interval, T , is called the period. 
In one period the object travels a distance s vT=  equal to the circumference,   s = 2πr ; 
thus  
   s = 2πr = vT . (6.5.3) 
 
The period T  is then given by 

 
  
T =

2πr
v

=
2πr
r ω

=
2π
ω

.  (6.5.4) 

 
The frequency f  is defined to be the reciprocal of the period, 
 

 
  
f =

1
T
=

ω
2π

. (6.5.5) 
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The SI unit of frequency is the inverse second, which is defined as the hertz, 1s [Hz]−⎡ ⎤ ≡⎣ ⎦ . 
 
The magnitude of the radial component of the acceleration can be expressed in several 
equivalent forms since both the magnitudes of the velocity and angular velocity are 
related by  

v = r ω . Thus we have several alternative forms for the magnitude of the 
centripetal acceleration. The first is that in Equation (6.6.3).  The second is in terms of the 
radius and the angular velocity, 
 

  
ar = rω 2 . (6.5.6) 

 
The third form expresses the magnitude of the centripetal acceleration in terms of the 
speed and radius, 

 
  
ar =

v2

r
.  (6.5.7) 

 
 Recall that the magnitude of the angular velocity is related to the frequency by 

2 fω π= , so we have a fourth alternate expression for the magnitude of the centripetal 
acceleration in terms of the radius and frequency, 
 
 

  
ar = 4π 2r f 2 . (6.5.8) 

 
 A fifth form commonly encountered uses the fact that the frequency and period 
are related by   f = 1/ T = ω / 2π . Thus we have the fourth expression for the centripetal 
acceleration in terms of radius and period, 
 

 
  
ar =

4π 2r
T 2 . (6.5.9) 

 
Other forms, such as   4π

2r 2 f / T  or   2πrω f , while valid, are uncommon. 
 
 Often we decide which expression to use based on information that describes the 
orbit. A convenient measure might be the orbit’s radius. We may also independently 
know the period, or the frequency, or the angular velocity, or the speed. If we know one, 
we can calculate the other three but it is important to understand the meaning of each 
quantity.  
 

6.5.1 Geometric Interpretation for Radial Acceleration for Uniform Circular 
Motion 

 
An object traveling in a circular orbit is always accelerating towards the center. Any 
radial inward acceleration is called centripetal acceleration. Recall that the direction of 
the velocity is always tangent to the circle. Therefore the direction of the velocity is 
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constantly changing because the object is moving in a circle, as can be seen in Figure 
6.14. Because the velocity changes direction, the object has a nonzero acceleration. 
  

 
 

Figure 6.14 Direction of the velocity for 
circular motion. 

 
 
 
 
 

 
 
 
 

Figure 6.15 Change in velocity vector. 
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 The calculation of the magnitude and direction of the acceleration is very similar 
to the calculation for the magnitude and direction of the velocity for circular motion, but 
the change in velocity vector, Δv , is more complicated to visualize.  The change in 
velocity ( ) ( )t t tΔ = + Δ −v v v    is depicted in Figure 6.15. The velocity vectors have been 
given a common point for the tails, so that the change in velocity, Δv , can be visualized. 
The length Δv  of the vertical vector can be calculated in exactly the same way as the 

displacement Δr . The magnitude of the change in velocity is 
 
 2 sin( / 2)v θΔ = Δv . (6.6.1) 
 
We can use the small angle approximation ( )sin / 2 / 2θ θΔ ≅ Δ  to approximate the 
magnitude of the change of velocity, 
 v θΔ ≅ Δv . (6.6.2) 
 
 The magnitude of the radial acceleration is given by 
 

 
    
ar = lim

Δt→0

Δv
Δt

= lim
Δt→0

v Δθ
Δt

= v lim
Δt→0

Δθ
Δt

= v dθ
dt

= v ω .  (6.6.3) 

 
The direction of the radial acceleration is determined by the same method as the direction 
of the velocity; in the limit  Δθ → 0 , Δ ⊥v v  , and so the direction of the acceleration 
radial component vector    

ar (t)  at time t  is perpendicular to position vector ( )tv  and 
directed inward, in the ˆ−r -direction. 
 

	
  
 
 
 


