A1 Vector Algebra and Calculus

Prof David Murray

david.murray@eng.ox.ac.uk
www.robots.ox.ac.uk/~dwm/Courses/2VA

8 lectures, MT 2015

Vector Algebra and Calculus

1 Revision of vector algebra, scalar product, vector product

2 Triple products, multiple products, applications to geometry
3 Differentiation of vector functions, applications to mechanics
4 Scalar and vector fields. Line, surface and volume integrals, curvilinear co-ordinates

5 Vector operators - grad, div and curl
6 Vector Identities, curvilinear co-ordinate systems
7 Gauss' and Stokes' Theorems and extensions
8 Engineering Applications

Gauss' and Stokes' Theorems

This lecture finally begins to deliver on why we introduced div, grad and curl by introducing ...

- Gauss' Theorem

This enables an integral taken over a volume to be replaced by one taken over the surface bounding that volume, and vice versa.
Why would we want to do that?
Computational efficiency and/or numerical accuracy come to mind.

- Stokes' Theorem

This enables an integral taken around a closed curve to be replaced by one taken over any surface bounded by that curve.

Gauss' Theorem

We want to find the total outward flux of the vector field $\mathbf{a}(\mathbf{r})$ across the surface S that bounds a volume V :

$$
\int_{S} \mathbf{a} \cdot d \mathbf{S}
$$

$d \mathbf{S}$ is
1 normal to the local surface element
2 must everywhere point out of the volume

Gauss' Theorem tells us that we can do this by considering the total flux generated inside the volume V :

Gauss' Theorem:

$$
\int_{S} \mathbf{a} \cdot d \mathbf{S}=\int_{V} \operatorname{div} \mathbf{a} d V
$$

Informal proof

Divergence was defined as

$$
\operatorname{div} \mathbf{a} d V=d(E f f l u x)=\sum_{\text {surface of } d V} \mathbf{a} \cdot d \mathbf{S}
$$

If we sum over the volume elements, this results in a sum over the surface elements.

But if two elemental surface touch, their $d \mathbf{S}$ vectors are in opposing direction and
 cancel.
Thus the sum over surface elements gives the overall bounding surface.

$$
\int_{V} \operatorname{div} \mathbf{a} d V=\int_{\text {Surface of } V} \mathbf{a} \cdot d \mathbf{S}
$$

\& Example of Gauss' Theorem

Q: Derive $\int_{S} \mathbf{a} \cdot d \mathbf{S}$ where $\mathbf{a}=z^{3} \hat{\mathbf{k}}$ and S is the surface of a sphere of radius R centred on the origin: (i) directly; (ii) by applying Gauss' Theorem.

$$
\begin{aligned}
& \mathbf{A}(\mathbf{i}): \text { On the surface of the sphere } \\
& \mathbf{a}=R^{3} \cos ^{3} \theta \hat{\mathbf{k}} \\
& d \mathbf{S}=h_{\theta} d \theta h_{\phi} d \phi(\hat{\boldsymbol{\theta}} \times \hat{\boldsymbol{\phi}})=R^{2} \sin \theta d \theta d \phi \mathbf{r} \\
& \mathbf{a} \cdot \mathrm{C} \mathbf{S}=R^{3} \cos ^{3} \theta R^{2} \sin \theta d \theta d \phi(\mathbf{P} \cdot \hat{\mathbf{k}}) \\
& \mathbf{p} \cdot \hat{\mathbf{k}}=\cos \theta \\
& \int_{S} \mathbf{a} \cdot d \mathbf{S}=\int_{\phi=0}^{2 \pi} \int_{0}^{\pi} R^{5} \cos ^{4} \theta \sin \theta d \theta d \phi \\
&=R^{5} \int_{\phi=0}^{2 \pi} d \phi \int_{\theta=0}^{\pi} \cos ^{4} \theta \sin \theta d \theta=\frac{2 \pi R^{5}}{5}\left[-\cos ^{5} \theta\right]_{0}^{\pi}=\frac{4 \pi R^{5}}{5}
\end{aligned}
$$

Example /ctd

A(ii): To apply Gauss' Theorem, we need
(i) to work out div a

$$
\mathbf{a}=z^{3} \hat{\mathbf{k}}, \quad \Rightarrow \operatorname{div} \mathbf{a}=3 z^{2}
$$

(ii) Perform the volume integral. Because diva involves just z, we can divide the sphere into discs of constant z and thickness $d z$. Then

$$
d V=\pi(\text { disc radius })^{2} d z=\pi\left(R^{2}-z^{2}\right) d z
$$

So:

$$
\begin{aligned}
\int_{V} \operatorname{div} \text { adV } & =3 \pi \int_{-R}^{R} z^{2}\left(R^{2}-z^{2}\right) d z \\
& =3 \pi\left[\frac{R^{2} z^{3}}{3}-\frac{z^{5}}{5}\right]_{-R}^{R}=\frac{4 \pi R^{5}}{5}
\end{aligned}
$$

Typical! The surface integral is tedious, but volume integral is "straightforward" ...

An Extension to Gauss' Theorem

Suppose vector field is $\mathbf{a}=U(\mathbf{r}) \mathbf{c}$ with $U(\mathbf{r})$ a scalar field \& \mathbf{c} a constant vector. From Lecture 6 result and noting that $\operatorname{div} \mathbf{c}=0$:

$$
\operatorname{div} \mathbf{a}=\operatorname{div}(U \mathbf{c})=\operatorname{grad} U \cdot \mathbf{c}+U \operatorname{div} \mathbf{c}=\operatorname{grad} U \cdot \mathbf{c}
$$

Gauss' Theorem tells us that

$$
\int_{S} U \mathbf{c} \cdot d \mathbf{S}=\int_{V} \operatorname{grad} U \cdot \mathbf{c} d V
$$

But taking constant coutside ...

$$
\mathbf{c} \cdot\left(\int_{S} U d \mathbf{S}\right)=\mathbf{c} \cdot\left(\int_{V} \operatorname{grad} U d V\right)
$$

Now c is arbitrary so result must hold for any vector c. Hence a ...
Gauss-Theorem extension:

$$
\int_{S} U d \mathbf{S}=\int_{V} \operatorname{grad} U d V
$$

\& Example

Q: $U=x^{2}+y^{2}+z^{2}$ is a scalar field, and volume V is the cylinder $x^{2}+y^{2} \leqslant a^{2}, 0 \leqslant z \leqslant h$. Compute the surface integral $\int_{S} U d \mathbf{S}$ over the surface of the cylinder.

A1) By direct surface integration ...
Symmetry gives zero contribution from curved surface, leaving Top surface:

$$
\begin{aligned}
& U=\left(x^{2}+y^{2}+z^{2}\right)=\left(r^{2}+h^{2}\right) \text { and } d \mathbf{S}=r d r d \phi \hat{\mathbf{k}} \\
& \Rightarrow \int U d \mathbf{S}=\int_{r=0}^{a}\left(h^{2}+r^{2}\right) r d r \int_{\phi=0}^{2 \pi} d \phi \hat{\mathbf{k}} \\
&=\left[\frac{1}{2} h^{2} r^{2}+\frac{1}{4} r^{4}\right]_{0}^{a} 2 \pi \hat{\mathbf{k}}=\pi\left(h^{2} a^{2}+\frac{1}{2} a^{4}\right) \hat{\mathbf{k}}
\end{aligned}
$$

\& Example /ctd

Bottom surface:

$$
\begin{gathered}
U=\left(x^{2}+y^{2}+z^{2}\right)=\left(x^{2}+y^{2}\right)=r^{2} \quad \& \quad d \mathbf{S}=-r d r d \phi \hat{\mathbf{k}} \\
\int U d \mathbf{S}=-\int_{r=0}^{a} r^{3} d r \int_{\phi=0}^{2 \pi} d \phi \hat{\mathbf{k}}=-\frac{\pi a^{4}}{2} \hat{\mathbf{k}} \\
\Rightarrow \text { Total integral is } \pi\left[h^{2} a^{2}+\frac{1}{2} a^{4}\right] \hat{\mathbf{k}}-\frac{1}{2} \pi a^{4} \hat{\mathbf{k}}=\pi h^{2} a^{2} \hat{\mathbf{k}} .
\end{gathered}
$$

Example, ctd: the volume integration

To test the RHS of the extension $\int_{S} U d \mathbf{S}=\int_{V}$ grad $U d V$ we have to compute

$$
\begin{gathered}
\int_{V} \operatorname{grad} U d V \\
U=x^{2}+y^{2}+z^{2} \Rightarrow \operatorname{grad} U=2(x \hat{\mathbf{\imath}}+y \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}})
\end{gathered}
$$

So the integral is:

$$
\begin{aligned}
& 2 \int_{V}(x \hat{\mathbf{i}}+y \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}}) r d r d z d \phi \\
= & 2 \int_{z=0}^{h} \int_{r=0}^{a} \int_{\phi=0}^{2 \pi}(r \cos \phi \hat{\mathbf{i}}+r \sin \phi \hat{\mathbf{\jmath}}+z \hat{\mathbf{k}}) r d r d z d \phi \\
= & 0 \hat{\mathbf{i}}+0 \hat{\mathbf{\jmath}}+2 \int_{z=0}^{h} z d z \int_{r=0}^{a} r d r \int_{\phi=0}^{2 \pi} d \phi \hat{\mathbf{k}}=\underline{\pi a^{2} h^{2} \hat{\mathbf{k}}}
\end{aligned}
$$

the $\hat{\jmath}$ component is $\alpha \int_{\phi=0}^{2 \pi} \sin \phi d \phi=0$

Further extension to Gauss' Theorem

Further "extensions" can be devised ...

For example, apply Gauss' theorem to

$$
\mathbf{a}(\mathbf{r})=\mathbf{b}(\mathbf{r}) \times \mathbf{c}
$$

where \mathbf{c} is a constant vector ...
... and see what happens.

Stokes' Theorem

Stokes' Theorem relates a line integral around a closed path ...
... to a surface integral over what is called a capping surface of the path.

Stokes' Theorem:

$$
\oint_{C} \mathbf{a} \cdot d \mathbf{r}=\int_{S} \operatorname{curl} \mathbf{a} \cdot d \mathbf{S}
$$

where S is any surface capping the curve C.

Note, RHS is $\int($ curl $\mathbf{a}) \cdot d \mathbf{S}$.
Why couldn't it be $\int \operatorname{curl}(\mathbf{a} \cdot d \mathbf{S})$?

Informal proof

Lecture 5 defined curl as the circulation per unit area, and showed that

$$
\sum_{\text {around elemental loop }} \mathbf{a} \cdot d \mathbf{r}=d C=(\boldsymbol{\nabla} \times \mathbf{a}) \cdot d \mathbf{S}
$$

If we add these little loops together, the internal line sections cancel out because the $d \mathbf{r}$'s are in opposite direction but the field \mathbf{a} is not. This gives the larger surface and the larger bounding contour.

In these diagrams the contour appears planar. In general the contour is any non-intersecting space curve.

Capping Surface

The previous argument says that for a given contour, the capping surface can be ANY surface bound by the contour.

Only requirement:
the surface element vectors point in the "general direction" of a r-h screw w.r.t. to the sense of the contour integral.

In practice, (in exam questions?!) the bounding contour is often planar, and the capping surface either flat, or hemispherical, or cylindrical.

\& Example of Stokes' Theorem

Q: Field $\mathbf{a}=-y^{3} \hat{\mathbf{\imath}}+x^{3} \hat{\mathbf{\jmath}}$ and C is the circle, radius A, centred at $(0,0)$. Derive $\oint_{C} \mathbf{a} \cdot d \mathbf{r}$ (i) directly and (ii) using Stokes' with a planar surface.

A: Directly

On the circle of radius A

$$
\mathbf{a}=A^{3}\left(-\sin ^{3} \phi \hat{\mathbf{\imath}}+\cos ^{3} \phi \hat{\mathbf{\jmath}}\right)
$$

and

$$
d \mathbf{r}=A d \phi \hat{\boldsymbol{\phi}}=A d \phi(-\sin \phi \hat{\mathbf{\imath}}+\cos \phi \hat{\mathbf{\jmath}})
$$

so that:

$$
\oint_{C} \mathbf{a} \cdot d \mathbf{r}=\int_{0}^{2 \pi} A^{4}\left(\sin ^{4} \phi+\cos ^{4} \phi\right) d \phi=\underline{\underline{\frac{3 \pi}{2}} A^{4}}
$$

$$
\int_{0}^{2 \pi} \sin ^{4} \phi d \phi=\int_{0}^{2 \pi} \cos ^{4} \phi d \phi=\frac{3 \pi}{4}
$$

Example /ctd

A: (Using Stokes') \int curla $\cdot d \mathbf{S}$ over planar disc ...

$$
\operatorname{curl} \quad \mathbf{a}=\left|\begin{array}{ccc}
\hat{\mathbf{\imath}} & \hat{\boldsymbol{\jmath}} & \hat{\mathbf{k}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y^{3} & x^{3} & 0
\end{array}\right|=3\left(x^{2}+y^{2}\right) \hat{\mathbf{k}}=3 r^{2} \hat{\mathbf{k}}
$$

We choose area elements to be circular strips of radius r thickness $d r$. Then

$$
\begin{gathered}
d \mathbf{S}=r d r d \phi \hat{\mathbf{k}} \\
\int_{S} \operatorname{curl} \mathbf{a} \cdot d \mathbf{S}=3 \int_{r=0}^{A} r^{3} d r \int_{\phi=0}^{2 \pi} d \phi=\frac{3 \pi}{2} A^{4}
\end{gathered}
$$

An Extension to Stokes' Theorem

Try similar "extension" with Stokes ...
Again let $\mathbf{a}(\mathbf{r})=U(\mathbf{r}) \mathbf{c}$, where \mathbf{c} is a constant vector. Then

$$
\text { curl } \mathbf{a}=U \text { curl } \mathbf{c}+\operatorname{grad} U \times \mathbf{c}
$$

But curl c is zero. Stokes' Theorem becomes:

$$
\oint_{C} U(\mathbf{c} \cdot d \mathbf{r})=\int_{S} \operatorname{grad} U \times \mathbf{c} \cdot d \mathbf{S}=\int_{S} \mathbf{c} \cdot(d \mathbf{S} \times \operatorname{grad} U)
$$

Re-arranging and taking constant cout ...

$$
\mathbf{c} \cdot \oint_{C} U d \mathbf{r}=-\mathbf{c} \cdot \int_{S} \operatorname{grad} U \times d \mathbf{S}
$$

But \mathbf{c} is arbitrary and so
An extension to Stokes': $\oint_{C} U d \mathbf{r}=-\int_{S} \operatorname{grad} U \times d \mathbf{S}$

\& Example of extension to Stokes' Theorem

Q: Derive $\oint_{C} U d \mathbf{r}$ where $U=x^{2}+y^{2}+z^{2}$ and C is the circle $(x-a)^{2}+y^{2}=a^{2}, z=0$, (i) directly and (ii) using Stokes with a planar capping surface.

A(i) Directly: The circle is $\mathbf{r}=a(1+\cos \alpha) \hat{\mathbf{\imath}}+a \sin \alpha \hat{\mathbf{\jmath}}$, so

$$
\begin{gathered}
U=x^{2}+y^{2}+z^{2}=a^{2}(1+\cos \alpha)^{2}+a^{2} \sin ^{2} \alpha=2 a^{2}(1+\cos \alpha) \\
d \mathbf{r}=a d \alpha(-\sin \alpha \hat{\mathbf{\imath}}+\cos \alpha \hat{\mathbf{\jmath}})
\end{gathered}
$$

So,

$$
\oint U d \mathbf{r}=2 a^{3} \int_{\alpha=0}^{2 \pi}(1+\cos \alpha)(-\sin \alpha \hat{\mathbf{\imath}}+\cos \alpha \hat{\mathbf{\jmath}}) d \alpha=2 \pi a^{3} \hat{\mathbf{\jmath}}
$$

(It is worth checking that a zero î component is indeed what you would expect from symmetry.)

Example /ctd

A(ii) Using Stokes'

Using the $x y$-planar surface

$$
\begin{aligned}
d \mathbf{S} & =\rho d \rho d \alpha \hat{\mathbf{k}} \\
\operatorname{grad} U & =\operatorname{grad} r^{2}=2 \mathbf{r} \\
& =2(a+\rho \cos \alpha) \hat{\mathbf{\imath}}+2 \rho \sin \alpha \hat{\mathbf{\jmath}}
\end{aligned}
$$

so that
$d \mathbf{S} \times \operatorname{grad} U=\rho d \rho d \alpha[2(a+\rho \cos \alpha)(\hat{\mathbf{k}} \times \hat{\mathbf{i}})+2 \rho \sin \alpha(\hat{\mathbf{k}} \times \hat{\mathbf{\jmath}})]$

$$
=\rho d \rho d \alpha[-2 \rho \sin \alpha \hat{\mathbf{\imath}}+2(a+\rho \cos \alpha) \hat{\mathbf{\jmath}}]
$$

and as $\int_{0}^{2 \pi} \sin \alpha d \alpha=0$ and $\int_{0}^{2 \pi} \cos \alpha d \alpha=0$

$$
\begin{aligned}
\int_{S} d \mathbf{S} \times \operatorname{grad} U & =\int_{\rho=0}^{a} \int_{\alpha=0}^{2 \pi} \rho d \rho d \alpha(2 a \hat{\mathbf{\jmath}}) \\
& =2 \pi \frac{a^{2}}{2}(2 a \hat{\mathbf{\jmath}})=2 \pi a^{3} \hat{\mathbf{\jmath}}
\end{aligned}
$$

Why were ρ, α used in the last eg?

It is simply a coordinate transformation to decouple the coordinates. In the plane the general position is

$$
\mathbf{r}=x \hat{\mathbf{\imath}}+y \hat{\mathbf{\jmath}}=r \cos \theta \hat{\mathbf{\imath}}+r \sin \theta \hat{\mathbf{\jmath}}=(a+\rho \cos \alpha) \hat{\mathbf{\imath}}++\rho \sin \alpha \hat{\mathbf{\jmath}}
$$

Going round the circumference, both r and θ change, so

$$
d \mathbf{r}=(\cos \theta d r-r \sin \theta d \theta) \hat{\mathbf{i}}+(\sin \theta d r+r \cos \theta d \theta) \hat{\mathbf{\jmath}}
$$

whereas because $|\boldsymbol{\rho}|=a \quad$ is constant

$$
d \boldsymbol{\rho}=(-a \sin \alpha d \alpha) \hat{\mathbf{\imath}}+(a \cos \alpha d \alpha) \hat{\mathbf{\jmath}}
$$

Summary

In this lecture, we have developed

- Gauss' Theorem

$$
\int_{\mathrm{V}} \operatorname{div} \mathbf{a} d V=\int_{\mathrm{S}} \mathbf{a} \cdot d \mathbf{S}
$$

If you sum up the δ (Effluxes) from each δ (Volume) in an object, you must end up with the overall efflux from the surface.

- Stokes' Theorem

$$
\oint_{\mathrm{C}} \mathbf{a} \cdot d \mathbf{r}=\int_{\mathrm{S}} \operatorname{curl} \mathbf{a} \cdot d \mathbf{S}
$$

which says if you add up the δ (Circulations) per unit area over an open surface, you end up with the Circulation around the rim

- We've seen how to verify and apply the theorems to simple surfaces and volumes using Cartesians, cylindrical and spherical polars.

