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A1 Vector Algebra and Calculus

Prof David Murray

david.murray@eng.ox.ac.uk
www.robots.ox.ac.uk/∼dwm/Courses/2VA

8 lectures, MT 2015
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Vector Algebra and Calculus

1 Revision of vector algebra, scalar product, vector product

2 Triple products, multiple products, applications to geometry

3 Differentiation of vector functions, applications to mechanics

4 Scalar and vector fields. Line, surface and volume integrals,
curvilinear co-ordinates

5 Vector operators — grad, div and curl

6 Vector Identities, curvilinear co-ordinate systems

7 Gauss’ and Stokes’ Theorems and extensions

8 Engineering Applications
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We started off

being concerned with individual vectors a, b, c, and so on.

We went on

to consider how single vectors vary over time or over some other
parameter such as arc length

In rest of the course, we will be concerned with

scalars and vectors which are defined over regions in space

In this lecture we introduce

line, surface and volume integrals

definition in curvilinear coordinates
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Scalar and vector fields

If a scalar function u(r) is defined at each r
in some region

u is a scalar field in that region.
Examples: temperature, pressure, altitude,
CO2 concentration
Similarly, if a vector function v(r) is defined
at each point, then

v is a vector field in that region.
Examples: wind velocity, magnetic field,
traffic flows, optical flow, electric fields

In field theory the aim is to derive statements about bulk properties of
scalar and vector fields
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Line integrals through fields
Line integrals are concerned with measuring

the integrated interaction with a field as you move through it on
some defined path.

Eg, given a map showing
the pollution density field
in Oxford, how much
gunk would you breath in
when cycling from college
to the Department on
different routes?

Miasma

Vapours Stench
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Not entirely frivolous ...

NO2 in area of SE London

2003 2010
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Vector line integrals

1) Chop path L into vector segments δri .
2) Multiply each segment by the field value at
that point in space.
3) Sum products.
Three types:

r

F(r)

δr

1: Integrand U(r) is a scalar
field. Integral is a vector.

I =
∫
L
U(r)dr

2: Integrand a(r) is a vector
field dotted with dr. Integral is a
scalar:

I =
∫
L
a(r) · dr

3: Integrand a(r) is a vector
field crossed with dr. Integral is
vector.

I =
∫
L
a(r)× dr
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♣ Examples
Total work done by force F as it moves point from A to B along path C .
Infinitesimal work done is dW = F · dr, hence total work is

WC =

∫
C
F · dr

Ampère’s law relating magnetic intensity H to linked current can be
written as

I =
∮
C
H · dr

Force on an element of wire carrying current I when placed in a magnetic
flux density B is dF = Idr × B.
So total force on loop of wire C :

F = I
∮
C

dr × B

Note: expressions above are beautifully compact in vector notation, and are all
independent of coordinate system
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♣ Examples

Q: A force F = x2y ı̂+ xy2 ̂ acts on a body at it moves between (0, 0)
and (1, 1). Find work done when the path is:

1 along the line y = x .
2 along the curve y = xn.
3 along the x axis to the point

(1, 0) and then along the line
x = 1

0,0 0,1

1,1

1

2 3

A:
In planar Cartesians r = ı̂x + ̂y ⇒dr = ı̂dx + ̂dy
Then the work done is∫

L
F · dr =

∫
L
(x2y ı̂+ xy2 ̂) · (̂ıdx + ̂dy) =

∫
L
(x2ydx + xy2dy) .
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Example Path 1

PATH 1: For the path y = x we find that
dy = dx . So it is easiest to convert all y
references to x .

0,0 0,1

1,1

1

2 3

∫ (1,1)
(0,0)

(x2ydx + xy2dy) =

∫ x=1

x=0
(x2xdx + xx2dx)

=

∫ x=1

x=0
2x3dx

=
[
x4/2

∣∣x=1
x=0 = 1/2 .

NB! Although x , y involved these are NOT double integrals.
Why not?
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Example Path 2

0,0 0,1

1,1

1

2 3

PATH 2: For path y = xn

dy = nxn−1dx

Again convert y references to x .

∫ (1,1)
(0,0)

(x2ydx + xy2dy) =

∫ x=1

x=0
(xn+2dx + nxn−1.x .x2ndx)

=

∫ x=1

x=0
(xn+2dx + nx3ndx)

=
1

n + 3
+

n
3n + 1
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Example Path 3

0,0 0,1

1,1

1

2 3

PATH 3: not smooth, so break into two.
Along the first section, y = 0 and dy = 0,
along second section x = 1 and dx = 0:

∫B

A
(x2ydx + xy2dy) =

∫ x=1

x=0
(x20dx) +

∫ y=1

y=0
1.y2dy

= 0+
[
y3/3

∣∣y=1
y=0

= 1/3 .

Line integral depends on path taken
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♣ Example 2

Q2: Repeat path (2), but now using the Force F = xy 2̂ı+ x2y ̂.
A2:

F · (̂ıdx + ̂dy) = xy2 dx + x2y dy .

For the path y = xn we find that dy = nxn−1dx , so∫ (1,1)
(0,0)

(xy2dx + x2ydy) =

∫ x=1

x=0
(x2n+1dx + nxn−1x2xndx)

=

∫ x=1

x=0
(x2n+1dx + nx2n+1dx)

=
1

2n + 2
+

n
2n + 2

=
1
2

This is independent of n, so
This line is independent of path!

Can we understand why?



A1 2015 14 / 1

Line integrals in Conservative fields
Write

g(x , y) = x2y2/2

Then the perfect differential is

dg =
∂g
∂x

dx +
∂g
∂y

dy = y2xdx + x2ydy

So our line integral∫
F · dr =

∫B

A
(y2xdx + yx2dy) =

∫B

A
dg = gB − gA

It depends solely on the value of g at the start and end points, and not
at all on the path

A vector field which gives rise to line integrals which are independent of
paths is called a conservative field
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Some questions about conservative fields
One sort of line integral performs the integration around a complete loop.
It is denoted

∮
1 If E is a conservative field, what is the value of

∮
E · dr ?

2 If E1 and E2 is conservative, is E1 + E2 conservative?

3 Later we show that the electric field around a point charge q

E = Kq
r̂
r2 K = 1/4πεrε0

is conservative. Are all electric fields conservative?

4 If E is the electric field, the potential function is

φ = −

∫
E · dr .

So are all electric fields conservative?
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Line integrals & parametrized curves

♣ Example 1:
Q: Evaluate

∫
F · dr when F = z ı̂+ y2 ̂+ xy k̂ from (0, 0, 0) to (1, 1, 1)

along the space curve x = p, y = p2, z = p3.
A:

F = p3̂ı+ p4 ̂+ p3k̂
dr = dx ı̂+ dy ̂+ dz k̂

= dp̂ı+ 2pdp̂+ 3p2dpk̂∫
F · dr =

∫p=1

p=0
(p3dp + 2p5dp + 3p5dp)

=
[
(1/4)p4 + (5/6)p6

∣∣p=1
p=0

= (26/24) .

Suppose the integral was from (0, 0, 0) to (−2, 4,−8) ...
∫p=?

p=?
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Line integrals & parametrized curves /ctd
Above,

∫
F · dr boiled down to working out some straightforward∫

F (p)dp. So, while the following don’t appear to involve vectors, they
could be the last stage in a vector integral ...

♣ 2:
Consider

I =
∫
L
F (x , y , z)ds ,

where the path L is the curve defined as x = x(p), y = y(p), z = z(p).
First, convert the function to F (p), writing

I =
∫pend

pstart

F (p)
ds
dp

dp

where (from Lec 3)
ds
dp

=

[(
dx
dp

)2

+

(
dy
dp

)2

+

(
dz
dp

)2
]1/2

.

Then do the (now straightforward) integral w.r.t. p.
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Line integrals & parametrized curves /ctd

I =
∫
L
F (x , y , z)ds

♣ 3: Suppose parameter is arc-length s and
the path L is x = x(s), y = y(s), z = z(s).
Convert the function to F (s), writing

I =
∫ send

sstart
F (s) ds

♣ 4: If p is x — so y = y(x) and z = z(x) (or similar for p = y or p = z)

I =
∫ xend

xstart

F (x)

[
1+

(
dy
dx

)2

+

(
dz
dx

)2
]1/2

dx .
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Surface integrals

Surface S is divided into infinitesimal vector
elements of area dS:

the dirn of the vector dS is the surface
normal
its magnitude represents the area of
the element.

dS

Again there are three possibilities:
1:

∫
S UdS — scalar field U;

vector integral.
2:

∫
S a · dS — vector field a;

scalar integral.

3:
∫

S a× dS — vector field a;
vector integral.
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Physical example of surface integral

Physical examples of surface integrals
often involve the idea of flux of a vector
field through a surface∫

S
a · dS

Mass of fluid crossing a surface element
dS at r in time dt is

dM = ρ v · dSdt

Total rate of gain of mass can be
expressed as a surface integral:

dM
dt

=

∫
S
ρ(r)v(r) · dS

dS
a

Note that expression is free of any coordinate system
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♣ Example

Q: Evaluate
∫
F · dS over the x = 1 side of the cube shown in the figure

when F = y ı̂+ z ̂+ x k̂.
A: dS is perp to the surface. Often, the surface will enclose a volume:
the surface direction is everywhere out of the volume
For the x = 1 face of the cube,

dS = dydz ı̂

∫
S
F · dS =

∫ ∫
(y ı̂+ z ̂+ x k̂) · dydz ı̂

=

∫ y=1

y=0

∫ z=1

z=0
ydydz

=
1
2

y2
∣∣1
0 z |10

= 1/2 .

1

1

x

z

y

1

dS

dS = dy dz i
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Volume integrals

The definition of the volume integral is again taken as the limit of a sum
of products as the size of the volume element tends to zero.

One obvious difference though is that the element of volume is a scalar.

The possibilities are:

1:
∫

V U(r)dV — scalar field; scalar integral (1P1 stuff!)

2:
∫

V a(r)dV — vector field; vector integral. In this case one can treat
each component separately.∫

V
adV =

∫
V

a1(x , y , z )̂ıdV +

∫
V

a2(x , y , z )̂dV +

∫
V

a3(x , y , z)k̂dV

= ı̂
∫
V

a1(x , y , z)dV + ̂
∫
V

a2(x , y , z)dV + k̂
∫
V

a3(x , y , z)dV

So, 3× 1P1 stuff.
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Changing variables: curvilinear coordinates

Before dealing with further examples of line, surface and volume integrals
it is important to understand how to convert an integral from one set of
coordinates into another

You saw how to do this for scalar volume integrals in 1P1 (and we’ve
seen that volume integrals can always be handled as scalars)

— but we need to understand where Jacobians came from, and how we
can apply the mechanism more generally.

You will find the general problem slightly heavy going

— the better news is that later we specialize to the standard set of polar
coordinate systems
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Changing variables: curvilinear coordinates
The line integral in Cartesian coordinates uses

r = x ı̂+ y ̂+ z k̂ and dr = dx ı̂+ dy ̂+ dz k̂

You can be sure that length scales are properly handled because
|dr| = ds =

√
dx2 + dy2 + dz2.

But often symmetry screams at you to change coordinate system:

likely to be plane, cylindrical, or spherical polars,
but can be something more general like “u, v ,w ”
— a curvilinear coordinate system

Now the bad news: Length scales are screwed up
r 6= uû+ v v̂ + wŵ

dr 6= duû+ dv v̂ + dwŵ

|dr| = ds 6=
√

du2 + dv2 + dw2 .
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Finding the length scales
Consider the transform to u, v where x = x(u, v) and y = y(u, v)

We write
r = x(u, v )̂ı+ y(u, v )̂

And because

dx =
∂x
∂u

du +
∂x
∂v

dv

dy =
∂y
∂u

du +
∂y
∂v

dv

lines of constant x

lin
e
s
 o

f c
o
n
s
ta

n
t y

yy

x x

lines of constant v
lines of const u

we can write dr =

(
∂x
∂u

du +
∂x
∂v

dv
)
ı̂+
(
∂y
∂u

du +
∂y
∂v

dv
)
̂

=

(
∂x
∂u

ı̂+
∂y
∂u

̂
)

du +

(
∂x
∂v

ı̂+
∂y
∂v

̂
)

dv

= hu û du + hv v̂ dv

hu and hv are called metric coefficients
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Metric coefficients, ctd
To repeat, the metric coefficients appear in

dr =

(
∂x
∂u

ı̂+
∂y
∂u

̂
)

du +

(
∂x
∂v

ı̂+
∂y
∂v

̂
)

dv

= hu û du + hv v̂ dv

hu,v are the factors that turn the du, dv , or whatever, into proper lengths.
But we can also write

dr =
∂r
∂u

du +
∂r
∂v

dv ⇒huû =
∂r
∂u

& hv v̂ =
∂r
∂v

As û has to be a unit vector, we find that

hu =

∣∣∣∣
∂r
∂u

∣∣∣∣ =
[(
∂x
∂u

)2

+

(
∂y
∂u

)2
]1/2

and similarly for v̂
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We can tie this in with tangents
If we write the position vector as

r = x(u, v )̂ı+ y(u, v )̂

we find the tangent to a v -constant
curve as

∂r
∂u

=
∂x
∂u

ı̂+
∂y
∂u

̂

z

y

x

lines of constant v
lin

e
s o

f co
n
sta

n
t u

(
∂r

∂u

)
du

(
∂r

∂v

)
dv

* This is like dr/dp but is partial because there are two parameters
and v is being held constant!

But u is not arclength, so ∂r/∂u will not be a unit tangent, rather

∂r
∂u

= huû , so hu =

∣∣∣∣
∂r
∂u

∣∣∣∣ & û =
1
hu

∂r
∂u

and similarly for v̂. Exactly what we derived before!
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To summarize ...

These ideas extend to n-vectors without need for further proof.

Summary

r = x(u, v ,w )̂ı+ y(u, v ,w )̂+ z(u, v ,w)k̂

dr = huduû + hvdv v̂ + hwdwŵ

hu =

∣∣∣∣
∂r
∂u

∣∣∣∣ hv =

∣∣∣∣
∂r
∂v

∣∣∣∣ hw =

∣∣∣∣
∂r
∂w

∣∣∣∣
∣∣∣∣
∂r
∂u

∣∣∣∣ =
[(
∂x
∂u

)2

+

(
∂y
∂u

)2

+

(
∂z
∂u

)2
]1/2

and similarly for others.
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Surface integrals and curvilinear coordinates

The surface element is a vector product
dSi = (dy ̂)× (dz k̂)

In curvi coords
dSw 6= (duû)× (dv v̂)

Locally the surface element is planar, so

dSw =
∂r
∂u

du × ∂r
∂v

dv

= huduû× hvdv v̂ z

y

x

lines of constant v
lin

e
s o

f co
n
sta

n
t u

(
∂r

∂u

)
du

(
∂r

∂v

)
dv

The general 3D result for dSw in (u, v ,w) coords is

dSw = huhvdudv(û× v̂)

For an orthogonal curvilinear coord system, û× v̂ = ŵ and

dSw = huhvdudvŵ
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Surface integrals and curvilinear coordinates /ctd

The general 3D result for dSw in (u, v ,w) coords is

dSw = huhvdudv(û × v̂)

For an orthogonal curvilinear coord system, û × v̂ = ŵ and

dSw = huhvdudvŵ

In the (x , y)→ (u, v) plane we arrive at a familiar result:

dS =

(
∂x
∂u

ı̂+
∂y
∂u

̂
)
×
(
∂x
∂v

ı̂+
∂y
∂v

̂
)

dudv

=

∣∣∣∣∣∣

ı̂ ̂ k̂
xu yu 0
xv yv 0

∣∣∣∣∣∣
dudv

=

∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ dudv k̂

Out pops the Jacobian!
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Volume integrals and Curvilinear Coordinates

What is the size of the volume
element in curvilinear coordinates?

It is the volume of a parallelopiped,
which in an earlier lecture we saw
was given by the scalar triple
product. (

∂r

∂u

)
du

(
∂r

∂v

)
dv

(
∂r

∂w

)
dw

Hence

dV =

(
∂r
∂u

du × ∂r
∂v

dv
)
· ∂r
∂w

dw = huhvhwdudvdw(û× v̂) · ŵ

You can show that this is also the Jacobian: ∂(x ,y ,z)
∂(u,v ,w)
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Volume integrals and Curvilinear Coordinates

To repeat:

dV =

(
∂r
∂u

du × ∂r
∂v

dv
)
· ∂r
∂w

dw = huhvhwdudvdw(û× v̂) · ŵ

General 3D result

dV = huhvhw du dv dw (û× v̂) · ŵ =

∣∣∣∣
∂(x , y , z)
∂(u, v ,w)

∣∣∣∣ du dv dw

Short cut if the system is orthogonal

dV = huhvhw du dv dw
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The Polars

Some curvilinear coordinate systems are orthogonal, meaning that û, v̂
and ŵ are mutually perpendicular, so that

û× v̂ = ŵ and (û× v̂) · ŵ = 1

We look at
plane polars
cylindrical polars
spherical polars
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Plane polar co-ordinates

Start from the position vector:

r = x ı̂+ y ̂ = r cos θ̂ı+ r sin θ̂

hr r̂ =
∂r
∂r

= (cos θ̂ı+ sin θ̂)

hθθ̂ =
∂r
∂θ

= (−r sin θ̂ı+ r cos θ̂)

⇒ hr =

∣∣∣∣
∂r
∂r

∣∣∣∣ = |cos θ̂ı+ sin θ̂| = 1

hθ =

∣∣∣∣
∂r
∂θ

∣∣∣∣ = |−r sin θ̂ı+ r cos θ̂| = r

r̂ = (cos θ̂ı+ sin θ̂)

θ̂ = (− sin θ̂ı+ cos θ̂)

⇒ dr = hr dr r̂ + hθ dθ θ̂ = dr r̂ + r dθ θ̂.
and dS = hrhθ dr dθ (r̂ × θ̂) = r dr dθ k̂ .

dS = rdrdθk̂
θ̂

r̂

r θ

dr

rdθ
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Cylindrical polar coordinates

x

y

z

ẑ
φ̂

r̂
P

R

ı̂
̂

k̂

r

φ

r

y

z

x

Lines of 

constant φ

Lines of

constant r

Lines of 

constant z

x = r cosφ , y = r sinφ , z = z

Position vector R = x ı̂+ y ̂+ z k̂ = r cos φ̂ı+ r sinφ̂+ z k̂

Why change the notation of position vector from r to R?
If we did not, r would not equal |r|, and r̂ would not be in same dirn as r.
This could be confusing.
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Cylindrical polars /ctd

R = r cos φ̂ı+ r sinφ̂+ z k̂
hr r̂ = ∂R/∂r = (cos φ̂ı+ sinφ̂)

hφφ̂ = ∂R/∂φ = (−r sin φ̂ı+ r cosφ̂)

hz ẑ = ∂R/∂z = k̂
⇒ hr = 1 and r̂ = cos φ̂ı+ sinφ̂

hφ = r and φ̂ = − sin φ̂ı+ cosφ̂

hz = 1 and ẑ = k̂
⇒ dR = dr r̂ + rdφ φ̂+ dz ẑ

and dSr = hφhzdφdz(φ̂× ẑ) = r dφ dz r̂

dSφ = hzhrdzdr(ẑ× r̂) = dz dr φ̂
dSz = hrhφdrdφ(̂r × ẑ) = rdrdφẑ
dV = r dr dφ dz
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♣ Example: Line integral in cylindrical polars
From the list: change in position vector is dR = dr r̂ + rdφ φ̂+ dz ẑ

Q: Evaluate
∮

C a · dR, where a = x3 ̂− y 3̂ı+ x2y k̂ and C is the circle of
radius ρ in the z = 0 plane, centred on the origin.

A: Turn a into cp’s
a = ρ3(− sin3 φ̂ı+ cos3φ̂+ cos2φ sinφk̂)
Since dz = dr = 0 on our particular path,
and the constant r = ρ,

dR = ρ dφ φ̂ = ρdφ(− sin φ̂ı+ cosφ̂)

so that∮
C
a·dR =

∫2π

0
ρ4(sin4φ+cos4φ)dφ =

3π
2
ρ4 x

y

z

r
φ

d l = rdφφ̂

NB! For line integrals you will often see the element along the path
written as d` (or dr). Just roll with it ...
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Surface integrals in cylindrical polars

Reminder ...

x

y

z

dz ẑ

dz ẑ

dr r̂

dr r̂rdφφ̂

rdφφ̂

dSz = rdrdφẑ

dSr = rdφdz r̂

dSφ = drdz φ̂

Cylindrical polars:
Often-used surface area elements
are:

dSz = dr r̂ × rdφφ̂ = r dr dφ ẑ
dSr = rdφφ̂× dz ẑ = r dφ dz r̂

Less often needed is

dSφ = hzhrdzdr(ẑ× r̂) = dz dr φ̂
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♣ Example: Surface integral in cyl polars
Q: Find

∫
S v · dS when v = y 2̂ı+ x2 ̂ and the surface S is a cylinder of

radius a and height h whose base sits on the x , y plane and whose axis
coincides with k̂.

A: v has zero k̂ component, so there is no contribution from the top
(where dS = +r dr dφk̂) or bottom (dS = −r dr dφk̂).
From the wall of the cylinder∫

v · dS =

∫h

z=0

∫2π

φ=0
(a2 sin2 φ̂ı+ a2 cos2φ̂) · (a dφ dz r̂)

But r̂ = cos φ̂ı+ sinφ̂, so∫
v · dS = a3

∫h

z=0

∫2π

φ=0
(sin2φ cosφ+ cos2φ sinφ)dφ dz

=
a3h
3
[
sin3φ− cos3φ)

]2π
0 = 0

Can we see why zero? ....
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Surface integrals in cylindrical polars

... plot the vector field v = y 2̂ı+ x2 ̂ from above. The red ring is the
cylinder.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

As much v flows in as flows out, and
∫
v · dS is the net outflow or efflux.
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Surface integrals in cylindrical polars
Q: Find

∫
S v · dS when v = x ı̂+ y ̂ and the surface S is a cylinder of

radius a and height h whose base sits on the x , y plane and whose axis
coincides with k̂.

A: v has zero k̂ component, hence there is no contribution from the top
and bottom.
From the wall of the cylinder∫

v · dS =

∫h

z=0

∫2π

φ=0
(a cos φ̂ı+ a sinφ̂) · a dφ dz r̂

But r̂ = cos φ̂ı+ sinφ̂, so∫
v · dS = a2

∫h

z=0

∫2π

φ=0
...

= ....

= 2π h a2

Can we see why finite and positive? ...
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Surface integrals in cylindrical polars

... plot the vector field v = x ı̂+ y ̂. The red ring is the cylinder ...
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∫
v · dS is the net efflux — clearly positive
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Volume integrals in cylindrical polars

x

y

z

dV = dxdydzdx ı̂

dy ̂

dz k̂

x

y

z

φ

dφ
rdφ

dz ẑ

dr r̂

rdφφ̂

dV = rdrdφdz

In Cartesians, volume element given by

dV = dx ı̂ · (dy ̂× dz k̂) = dx dy dz

In cylindrical polars, volume element given by

dV = dr r̂ · (rdφφ̂× dz ẑ) = r dφ dr dz

NB: Volume is scalar triple product, hence:

dV =

∣∣∣∣∣∣

r̂dr
φ̂rdφ
ẑdz

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂φ

∂y
∂φ

∂z
∂φ

∂x
∂z

∂y
∂z

∂z
∂z

∣∣∣∣∣∣∣
dr dφ dz
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Spherical polars

x

y

z

ı̂
̂

k̂ θ̂
φ̂

r̂

P

r

φ

θ

x

y

z

Lines of 
constant

Lines of
constant r

Lines of 
constant

φ

θ

(longitude)

(latitude)

Can use r again ...

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ
r = x ı̂+ y ̂+ z k̂

= r sin θ cos φ̂ı+ r sin θ sinφ̂+ r cos θk̂
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Spherical polars /ctd

r = r sin θ cos φ̂ı+ r sin θ sinφ̂+ r cos θk̂
⇒ hr r̂ = ∂r/∂r =

hθθ̂ = ∂r/∂θ =

hφφ̂ = ∂r/∂φ =

⇒ hr = 1 , hθ = r sin θ, hφ = r

⇒ r̂ = sin θ cos φ̂ı+ sin θ sinφ̂+ cos θk̂
θ̂ = cos θ cos φ̂ı+ cos θ sinφ̂− sin θk̂
φ̂ = − sin θ̂ı+ cosφ ̂

⇒ dr = dr r̂ + rdθ θ̂+ r sin θ dφ φ̂
dSr = r2 sin θ dθ dφ r̂ on spherical surface

dSθ = ? dr dθ θ̂ on conical surface: DIY

dSφ = r dr dφ φ̂ on planar hemisphere surface
dV = r2 sin θ dr dθ dφ
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Surface integrals in spherical polars

Three possibilities, but most useful are surfaces of constant r
The surface element dSr is given by

dSr = hθdθθ̂× hφdφφ̂
= r2 sin θdθdφr̂

x

y

z

rdθθ̂

r sin θdφφ̂

dSr = r
2 sin θdθdφr̂
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♣ Example: Surface integral in spherical polars
Q: Evaluate

∫
S a · dS, where a = z3k̂ and S is the sphere of radius A

centred on the origin.
A: In general:

z = r cos θ dS = r2 sin θdθdφr̂

On surface of the sphere, r = A, so that

a = z3k̂ = A3cos3θk̂ dS = A2 sin θ dθ dφr̂

Hence ∫
S
a · dS =

∫2π

φ=0

∫π
θ=0

A3cos3θ A2 sin θ [k̂ · r̂] dθdφ

= A5
∫2π

0
dφ

∫π
0

cos3θ sin θ[cos θ] dθ

= 2πA5 1
5
[
− cos5 θ

]π
0 =

4πA5

5
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Volume integrals in spherical polars

x

y

z

rdθθ̂

r sin θdφφ̂

dr r̂

dV = r2 sin θdrdθdφ

dφ

dφ

dθ

θ

φ

r

r sin θdφ

r sin θ

Volume element given by

dV = dr r̂.(rdθθ̂× r sin θdφφ̂) = r2 sin θdrdθdφ

Note again that this volume could be written as a determinant
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Summary

We introduced line, surface and volume integrals involving vector
fields.

We defined curvilinear coordinates, and realized that metric
coefficient were necessary to relate change in an arbitrary coordinate
to a length scale.

We showed in detail how line, surface and volume elements are
derived, and how the results specialized for orthogonal curvilinear
system, in particular plane, cylindrical and spherical polar
coordinates.

Working stuff out from first principles has been hard going: as the
examples showed, application is much easier!


