
Lecture 3

Differentiating Vector Functions of a Single
Variable

It should be no great surprise that we often wish differentiate vector functions. For
example, suppose you were driving along a wiggly road with position r(t) at time t.
Differentiating r(t) wrt time should yield your velocity v(t), and differentiating v(t)
should yield your acceleration. Let’s see how to do this.

3.1 Differentiation of a vector
The derivative of a vector function a(p) of a single parameter p is

da

dp
= lim

δp→0

a(p + δp)− a(p)

δp
. (3.1)

If we write a in terms of components relative to a FIXED coordinate system (̂ı, ̂, k̂
constant)

a(p) = a1(p)̂ı + a2(p)̂ + a3(p)k̂ (3.2)

then
da

dp
=
da1

dp
ı̂ +

da2

dp
̂ +

da3

dp
k̂ . (3.3)

That is, in order to differentiate a vector function, one simply differentiates each com-
ponent separately.

For example, suppose r(t) is the position vector of an object moving w.r.t. the orgin.

r(t) = x(t )̂ı + y(t )̂ + z(t)k̂ (3.4)

Then the instantaneous velocity is

v(t) =
dr

dt
=
dx

dt
ı̂ +

dy

dt
̂ +

dz

dt
k̂ (3.5)
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and the acceleration is

a(t) =
dv

dt
=
d2r

dt2
. (3.6)

It also follows that all the familiar rules of differentiation apply, and they don’t get
altered by vector operations like scalar product and vector products. Thus, for example:

d

dp
(a× b) =

da

dp
× b+ a×

db

dp

d

dp
(a · b) =

da

dp
· b+ a ·

db

dp
. (3.7)

Note that da/dp has a different direction and a different magnitude from a.

Likewise, as you might expect, the chain rule still applies. If a = a(u) and u = u(t),
say:

d

dt
a =

da

du

du

dt
(3.8)

♣ Example #1

Q: The position of a vehicle is r(u) where u is the amount of fuel consumed by some
time t. Work out an expression for the acceleration.

A: The velocity is

v =
dr

dt
=
dr

du

du

dt
(3.9)

a =
d

dt

dr

dt
=
d2r

du2

(
du

dt

)2

+
dr

du

d2u

dt2
(3.10)

♣ Example #2

Q: A 3D vector a of constant magnitude is varying over time. What can you say about
the direction of ȧ?

A: Using intuition: if only the direction is changing, then the vector must be tracing out
points on the surface of a sphere. We would guess that the derivative ȧ is orthogonal
to a.

To prove this write
d

dt
(a · a) = a ·

da

dt
+
da

dt
· a = 2a ·

da

dt
. (3.11)

But (a · a) = a2 which we are told is constant. So
d

dt
(a · a) = 0 ⇒ 2a ·

da

dt
= 0 (3.12)

and hence a and da/dt must be perpendicular.
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3.2 Integration of a vector function
As with scalars, integration of a vector function of a single scalar variable is the reverse
of differentiation. That is,

∫ p2

p1

[
da(p)

dp

]
dp = a(p2)− a(p1) (3.13)

Eg from dynamics
∫ t2

t1

a dt = v(t2)− v(t1) (3.14)

However, other types of integral are possible, especially when the vector is a function
of more than one variable. This requires the introduction of the concepts of scalar and
vector fields. See lecture 4!

3.3 Space curves and derivatives
A “space curve” is simply a curve in 3D. We will assume that each point on the curve
has a different position vector r. Now suppose r is parameterized by p, so that by
varying p we trace out the complete curve r(p).

δ r

r

(p)r

p)δ(p +

Figure 3.1: δr is a secant to the curve but, in the limit as δp → 0, becomes a tangent.

Referring to Fig. 3.1, we can write

r(p + δp) = r(p) + δr . (3.15)

The small vector δr is obviously a secant to the curve, and δr/δp points in the same
direction. It must do — we are just dividing a little vector by a little scalar.

In the limit as δp tends to zero

lim
δp→0

δr

δp
→

dr

dp
(3.16)
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a quantity which must be a tangent to the space curve. Note however that using a
general parameter p there is nothing special about the magnitude of the tangent.

Fig. 3.2 shows just three of the infinity of ways of parametrizing the curve.
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Figure 3.2: Different parametrizations describe the same curve. Arc-length s is special as it measures
actual distance along the curve.

There is however one special parametrization, and that is when p measures arc-length.
Usually denoted by s, the difference in arc-length s between two points on the curve is
the actual distance travelled along the curve. But for infinitesimally small movements,
ds = |dr|, so that dr/ds must be of unit length.

We conclude that
If a curve r(s) is parametrized by the arc length s

dr/ds is everywhere a UNIT tangent to the curve.

More generally, however, p will not be arc-length. But the chain rule tells us that:

dr

dp
=
dr

ds

ds

dp
(3.17)

So, the direction of the derivative is that of a tangent to the curve, and its magnitude
is |ds/dp|, the rate of change of arc length w.r.t the parameter.

An interesting case is when p is time t

dr

dt
=
dr

ds

ds

dt
(3.18)

So the vector velocity along the curve is the unit tangent times the scalar speed ds/dt.
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♣ Example

Q: Draw the curve

r = a cos(
s√

a2 + h2
)̂ı + a sin(

s√
a2 + h2

)̂ +
hs√
a2 + h2

k̂ (3.19)

where s is arc length and h, a are constants. Show that the tangent dr/ds to the
curve has a constant elevation angle w.r.t the xy -plane, and determine its magnitude.

A:
dr

ds
= −

a√
a2 + h2

sin () ı̂ +
a√

a2 + h2
cos () ̂ +

h√
a2 + h2

k̂ (3.20)

The projection on the xy plane has magnitude a/
√
a2 + h2 and in the z direction

h/
√
a2 + h2, so the elevation angle is a constant, tan−1(h/a).

22
a/  a  + h  

d

ds

r

2
h/  a  + h  

2

x y
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Length

Length

Figure 3.4:

We are expecting dr/ds = 1, and indeed
√
a2 sin2() + a2 cos2() + h2/

√
a2 + h2 = 1. (3.21)
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The example used components, and it is worth stressing that the position vector r in
Cartesian coordinates is

r = x ı̂+ y ̂+ z k̂ or using the parameter r(p) = x(p)̂ı+ y(p)̂+ z(p)k̂ . (3.22)

It follows that

dr = dx ı̂ + dy ̂ + dz k̂ . (3.23)

But we have already noted that ds = |dr|, hence it follows that

ds2 = dx2 + dy 2 + dz2 . (3.24)

This is akin to applying Pythagoras’ theorem to a infinitesimal section of curve.

z
y

x

δy

δzδ x

δ s

Figure 3.5:

So if a curve is parameterized in terms of p

ds

dp
=

√
dx

dp

2

+
dy

dp

2

+
dz

dp

2

, (3.25)

which will be unity if and only if p = s.

If one can work out ds/dp one can easily find the relationship between s and p by
integration. As an example, suppose in our earlier example we had parameterized the
helix as r = a cos p̂ı + a sin p̂ + hpk̂. Then

ds

dp
=

√
dx

dp

2

+
dy

dp

2

+
dz

dp

2

(3.26)

=

√
a2 sin2 p + a2 cos2 p + h2 =

√
a2 + h2

Integrating we see immediately that

p = s/
√
a2 + h2 . (3.27)
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3.4 The Frenet-Serret relationships
We now know that we can specify points on a non-planar or space curve using distance
or arc-length s along the wire.

We are now going to introduce a local orthogonal coordinate frame for each point s
along the curve, ie one with its origin at r(s). To specify a coordinate frame we need
three mutually perpendicular directions, and these should be intrinsic to the curve, not
fixed in an external reference frame. The ideas were first suggested by two French
mathematicians, F-J. Frenet and J. A. Serret.

r (s)O

n

t d
ds
t

s increasing

Figure 3.6:

1. Tangent t̂

There is an obvious choice for the first direction at the point r(s), namely the unit
tangent t̂. We already know that

t̂ =
dr(s)

ds
(3.28)

2. Principal Normal n̂

Recall that earlier we proved that if a was a vector of constant magnitude that
varies in direction over time then da/dt was perpendicular to it. Because t̂ has
constant magnitude but varies over s, d t̂/ds must be perpendicular to t̂.

Hence the principal normal n̂ is

d t̂

ds
= κn̂ : where κ ≥ 0 . (3.29)

κ is the curvature, and κ = 0 for a straight line. The plane containing t̂ and n̂ is
called the osculating plane.
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3. The Binormal b̂
The local coordinate frame is completed by defining the binormal

b̂(s) = t̂(s)× n̂(s) . (3.30)

Since b̂ · t̂ = 0,

d b̂

ds
· t̂+ b̂ ·

d t̂

ds
=
d b̂

ds
· t̂+ b̂ · κn̂ = 0 (3.31)

from which

d b̂

ds
· t̂ = 0. (3.32)

But this means that d b̂/ds is along the direction of n̂, or

d b̂

ds
= −τ(s)n̂(s) (3.33)

where τ is the torsion, and the negative sign is a matter of convention.

Differentiating n̂ · t̂ = 0 and n̂ · b̂ = 0, we find

d n̂

ds
= −κ(s)t̂(s) + τ(s)b̂(s). (3.34)

We now have all three of
The Frenet-Serret relationships:

d t̂/ds = κn̂ (3.35)
d n̂/ds = −κ(s)t̂(s) + τ(s)b̂(s) (3.36)
d b̂/ds = −τ(s)n̂(s) (3.37)

♣ Example

Q Derive κ(s) and τ(s) for the helix

r(s) = a cos

(
s

β

)
ı̂ + a sin

(
s

β

)
̂ + h

(
s

β

)
k̂; β =

√
a2 + h2 (3.38)

and comment on their values.

A We found the unit tangent earlier as

t̂ =
dr

ds
=

[
−
a

β
sin

(
s

β

)
,
a

β
cos

(
s

β

)
,
h

β

]
. (3.39)
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Differentiation gives

κn̂ =
d t̂

ds
=

[
−
a

β2
cos

(
s

β

)
, −

a

β2
sin

(
s

β

)
, 0

]
(3.40)

Curvature is always positive, so

κ =
a

β2
n̂ =

[
− cos

(
s

β

)
, − sin

(
s

β

)
, 0

]
. (3.41)

So the curvature is constant, and the normal is parallel to the xy -plane.

Now use

b̂ = t̂× n̂ =

∣∣∣∣∣∣

ı̂ ̂ k̂

(−a/β)S (a/β)C (h/β)

−C −S 0

∣∣∣∣∣∣
=

[
h

β
sin

(
s

β

)
, −

h

β
cos

(
s

β

)
,
a

β

]

(3.42)

and differentiate b̂ to find an expression for the torsion

d b̂

ds
=

[
h

β2
cos

(
s

β

)
,

h

β2
sin

(
s

β

)
, 0

]
=
−h
β2
n̂ (3.43)

so the torsion is

τ =
h

β2
(3.44)

again a constant.

3.5 Derivative (eg velocity) components in plane polars
In plane polar coordinates, the radius vector of any
point P is given by

r = r cos θ̂ı + r sin θ̂ (3.45)
= r r̂ (3.46)

where we have introduced the unit radial vector

r̂ = cos θ̂ı + sin θ̂ . (3.47)

The other “natural” (we’ll see why in a later lecture)
unit vector in plane polars is orthogonal to r̂ and is

θ̂ = − sin θ̂ı + cos θ̂ (3.48)

so that r̂ · r̂ = θ̂ · θ̂ = 1 and r̂ · θ̂ = 0.

r̂

θ̂

ı̂

̂
θ

r
P
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Now suppose P is moving so that r is a function of time t. Its velocity is

ṙ =
d

dt
(r r̂) =

dr

dt
r̂ + r

d r̂

dt
(3.49)

=
dr

dt
r̂ + r

dθ

dt
(− sin θ̂ı + cos θ̂)

=
dr

dt
r̂ + r

dθ

dt
θ̂

= radial + tangential

The radial and tangential components of velocity of P are therefore dr/dt and rdθ/dt,
respectively.

Differentiating a second time gives the acceleration of P

r̈ =
d2r

dt2
r̂ +

dr

dt

dθ

dt
θ̂ +

dr

dt

dθ

dt
θ̂ + r

d2θ

dt2
θ̂ − r

dθ

dt

dθ

dt
r̂ (3.50)

=

[
d2r

dt2
− r

(
dθ

dt

)2
]
r̂ +

[
2
dr

dt

dθ

dt
+ r

d2θ

dt2

]
θ̂

Three obvious cases are:

θ const: r̈ =
d2r

dt2
r̂ (3.51)

r const: r̈ = −r
(
dθ

dt

)2

r̂ + r
d2θ

dt2
θ̂

r and dθ/dt const: r̈ = −r
(
dθ

dt

)2

r̂ (3.52)
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3.6 Rotating systems

Consider a body which is rotating with constant angular velocity ω about some axis
passing through the origin. Assume the origin is fixed, and that we are sitting in a fixed
coordinate system Oxyz .

If ρ is a vector of constant magnitude and constant direction in the rotating system,
then it must be a function of t in the fixed system.
At any instant as observed in the fixed system

dρ

dt
= ω × ρ(t). (3.53)

Note that: dρ/dt
– will have fixed magnitude,
– will always be perpendicular to the axis of rotation
– will vary in direction within those constraints.
The point ρ(t) will move in a plane in the fixed system.

ω

ρ

3.6.1 Rotation: Part 2

Now consider a set of mutually orthogonal unit vectors l̂, m̂, n̂ attached to the rotating
system. In the fixed frame, each of l̂, m̂, and n̂ has a time dependence:

d l̂

dt
= ω × l̂

dm̂

dt
= ω × m̂

d n̂

dt
= ω × n̂ (3.54)

Note (1) that the angular velocity vector ω points in the same direction as the axis of
rotation, and is fixed both with respect to the rotating frame and the fixed frame.

Note (2) that since each of d l̂/dt, dm̂/dt, d n̂/dt is perpendicular to ω they must be
coplanar.

Let ρ = ρ1̂l+ ρ2m̂+ ρ3n̂ be a constant vector in the rotating frame, so that ρ1,2,3 are
constant. Its rate of change in fixed frame is

dρ

dt
= ω × ρ (3.55)

= ρ1(ω × l̂) + ρ2(ω × m̂) + ρ3(ω × n̂)

= ρ1
d l̂

dt
+ ρ2

dm̂

dt
+ ρ3

d n̂

dt

ω

n

lm
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So, as expected, its time dependence derives from the time dependence of l̂(t),m̂(t),
n̂(t), and not from its coefficients with respect to this basis set, which were constants.

3.6.2 Rotation: Part 3

Now suppose ρ is the position vector of a point P which moves in the rotating frame.
It will have two contributions to motion with respect to the fixed frame, one due to it
motion within the rotating frame, and one due to the rotation itself.

Let ρ be defined in a rotating coordinate frame which is, instantaneously, aligned with
the fixed coord system. So at time t, and only at time t, r = ρ.
Over a period δt, at time t, the compo-
nent of the motion in the fixed frame due
to rotation is

(ω × ρ)δt = (ω × r)δt . (3.56)

If the component of “independent” motion
in the rotating frame is δρ, then the overall
movement in time δt is

δr = δρ + (ω × r)δt . (3.57)

So the instantaneous velocity in the fixed
frame is

dr

dt
=

Dρ

Dt
+ ω × r (3.58)

δρ δ

P at t+

r= at tρ

r

P at  t

δ t

ω

(ω  r) δ t

i,l

j,m

k,n

NB! The capital D’s are used to indicate differentiation in the rotating frame.

3.6.3 Rotation 4: Instantaneous acceleration

Our previous result is a general one relating the time derivatives of any vector in
rotating and non-rotating frames. Because the frames are instantaneously aligned at
t, any vector in the fixed frame has the same value in the rotating frame — just as
r = ρ.

So, using operator notation,

r̈ =

[
D

Dt
+ ω×

]
ṙ =

[
D

Dt
+ ω×

](
Dρ

Dt
+ ω × r

)
(3.59)
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The instantaneous acceleration is therefore

r̈ =
D2ρ

Dt2
+ 2ω ×

Dρ

Dt
+ ω × (ω × r) (3.60)

• The first term is the acceleration of the point P in the rotating frame measured
in the rotating frame.

• The last term is the centripetal acceleration to due to the rotation. (Yes! Its
magnitude is ω2r and its direction is that of −r. Check it out.)

• The middle term is an extra term which arises because of the velocity of P in the
rotating frame. It is known as the Coriolis acceleration, named after the French
engineer who first identified it.

Because of the rotation of the earth, the Coriolis acceleration is of great importance
in meteorology and accounts for the occurrence of high pressure anti-cyclones and
low pressure cyclones in the northern hemisphere, in which the Coriolis acceleration
is produced by a pressure gradient. It is also a very important component of the
acceleration (hence the force exerted) by a rapidly moving robot arm, whose links whirl
rapidly about rotary joints.

♣ Example

Q: Find the instantaneous acceleration of a projectile fired along a line of longitude
(with angular velocity of γ constant relative to the sphere) if the sphere is rotating
with angular velocity ω.

A: In the rotating frame

Dρ

Dt
= γ × ρ and

D2ρ

Dt2
= γ ×

Dρ

Dt
= γ × (γ × ρ) (3.61)

So the in the fixed reference frame

r̈ = γ × (γ × r) + 2ω × (γ × r) + ω × (ω × r) . (3.62)

The first term is the centripetal acceleration due to the projectile moving around the
sphere — which it does because of the gravitational force. The last term is the cen-
tripetal acceleration resulting from the rotation of the sphere. The middle term is the
Coriolis acceleration.
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Figure 3.7: Coriolis example.

Using Fig. 3.7, at some instant t let

r = ρ(t) = R cos(γt)m̂ + R sin(γt)n̂ (3.63)

Then

γ × (γ × r) = (γ · r)γ − γ2r = −γ2r , (3.64)

as γ = γ l̂. Check the direction — the negative sign means it points towards the centre
of the sphere, which is as expected. Likewise the last term can be obtained as

ω × (ω × r) = −ω2R sin(γt)n̂ (3.65)

Note that it is perpendicular to the axis of rotation m̂, and because of the minus sign,
directed towards the axis)

The Coriolis term is derived as:

2ω ×
Dρ

Dt
= 2




0

ω

0


×





γ

0

0


×




0

R cos γt

R sin γt




 (3.66)

= 2ωγR cos γt̂ l (3.67)

Now consider a rocket on rails which stretch north from the equator. As the rocket
travels north it experiences the Coriolis force (exerted by the rails):
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2 γ ω R cos γt l̂

+ve -ve +ve +ve

Hence the coriolis force is in the direction opposed to l̂ (i.e. in the opposite direction to
the earth’s rotation). In the absence of the rails (or atmosphere) the rocket’s tangetial
speed (relative to the surface of the earth) is greater than the speed of the surface of
the earth underneath it (since the radius of successive lines of latitude decreases) so it
would (to an observer on the earth) appear to deflect to the east. The rails provide a
coriolis force keeping it on the same meridian.

(NB instantaneously common to earth’s surface and rocket)

Tangential component of velocity

Rocket’s velocity in direction of meridian

Tangential velocity of earth’s surface 

Figure 3.8: Rocket example

Revised January 23, 2018
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Lecture 4

Line, Surface and Volume Integrals.
Curvilinear coordinates.

In much of the rest of the course, we will be concerned not with individual vectors, but
with scalars and vectors which are defined over regions in space — scalar and vector
fields. When a scalar function u(r) is determined or defined at each position r in some
region, we say that u is a scalar field in that region. Similarly, if a vector function v(r)
is defined at each point, then v is a vector field in that region. As you will see, in field
theory our aim is to derive statements about the bulk properties of scalar and vector
fields, rather than to deal with individual scalars or vectors. Familiar examples of each
are shown in Fig. 4.1.

V

z

(a) (b)

Figure 4.1: Examples of (a) a scalar field (pressure); (b) a vector field (wind velocity)

In this lecture we introduce line, surface and volume integrals, and consider how these
are defined in non-Cartesian, curvilinear coordinates.

1
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4.1 Line integrals through fields
Line integrals are concerned with measuring the integrated interaction with a field as
you move through it on some defined path. Eg, given a map showing the pollution
density field in Oxford, you may wish to work out how much pollution you breath in
when cycling from college to the Department via different routes.

First recall the definition of an integral for a scalar function f (x) of a single scalar
variable x . One assumes a set of n samples fi = f (xi) spaced by δxi . One forms the
limit of the sum of the products f (xi)δxi as the number of samples tends to infinity

∫
f (x)dx = lim

n →∞
δxi → 0

n∑

i=1

fiδxi . (4.1)

For a smooth function, it is irrelevant how the function is subdivided.

In a vector line integral, the path (a space curve!) L along which the integral is to be
evaluated is split into a large number of vector segments δri . Each line segment is then
multiplied by the quantity associated with that point in space, the products are then
summed and the limit taken as the lengths of the segments tend to zero.

There are three types of integral we have to think about, depending on the nature of
the product:

1. Integrand U(r) is a scalar field, hence the integral is a vector.

I =

∫

L

U(r)dr

(
= lim

δri→0

∑

i

Uiδri .

)
(4.2)

2. Integrand a(r) is a vector field dotted with dr hence the integral is a scalar:

I =

∫

L

a(r) · dr

(
= lim

δri→0

∑

i

ai · δri .

)
(4.3)

3. Integrand a(r) is a vector field crossed with dr hence vector result.

I =

∫

L

a(r)× dr

(
= lim

δri→0

∑

i

ai × δri .

)
(4.4)

Note immediately that unlike an integral in a single scalar variable, there are many
paths L from start point rA to end point rB, and in general the integral will depend
on the path taken.
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r

F(r)

δr

Figure 4.2: Line integral. In the diagram F(r) is a vector field, but it could be replace with scalar field
U(r).

4.1.1 Physical examples of line integrals

i) The total work done by a force F as it moves a point from A to B along a given
path C is given by a line integral of type 2 above. If the force acts at point r and
the instantaneous displacement along curve C is dr then the infinitesimal work done is
dW = F · dr, and so the total work done traversing the path is

WC =

∫

C

F · dr (4.5)

ii) Ampère’s law relating magnetic intensity H to linked current can be written as

∮

C

H · dr = I (4.6)

where I is the current enclosed by the closed path C.

iii) The force on an element of wire carrying current I, placed in a magnetic field of
strength B, is dF = Idr×B. So if a loop C of this wire is placed in the field, the total
force will be and integral of type 3 above:

F = I

∮

C

dr × B (4.7)

Note that the expressions above are beautifully compact in vector notation, and are all
independent of coordinate system. Of course when evaluating them we need to choose
a coordinate system: often this is the standard Cartesian coordinate system (as in the
worked examples below), but need not be.



4/4 LECTURE 4. LINE, SURFACE AND VOLUME INTEGRALS. CURVILINEAR COORDINATES.

♣ Examples

Q1: An example in the xy -plane. A force F = x2y ı̂+xy 2̂
acts on a body at it moves between (0, 0) and (1, 1).
Determine the work done when the path is

1. along the line y = x .

2. along the curve y = xn.

3. along the x axis to the point (1, 0) and then along
the line x = 1. 0,0 0,1

1,1

1

2 3

A1: This is an example of the “type 2” line integral. In plane Cartesians, dr = ı̂dx+ ̂dy .
Then the work done is

∫

L

F · dr =

∫

L

(x2ydx + xy 2dy) . (4.8)

1. For the path y = x we find that dy = dx . So it is easiest to convert all y
references to x .

∫ (1,1)

(0,0)

(x2ydx+xy 2dy) =

∫ x=1

x=0

(x2xdx+xx2dx) =

∫ x=1

x=0

2x3dx =
[
x4/2

∣∣x=1

x=0
= 1/2 .

(4.9)

2. For the path y = xn we find that dy = nxn−1dx , so again it is easiest to convert
all y references to x .

∫ (1,1)

(0,0)

(x2ydx + xy 2dy) =

∫ x=1

x=0

(xn+2dx + nxn−1.x.x2ndx) (4.10)

=

∫ x=1

x=0

(xn+2dx + nx3ndx) (4.11)

=
1

n + 3
+

n

3n + 1
(4.12)

3. This path is not smooth, so break it into two. Along the first section, y = 0 and
dy = 0, and on the second x = 1 and dx = 0, so
∫ B

A

(x2ydx + xy 2dy) =

∫ x=1

x=0

(x20dx) +

∫ y=1

y=0

1.y 2dy = 0 +
[
y 3/3

∣∣y=1

y=0
= 1/3 .

(4.13)



4.1. LINE INTEGRALS THROUGH FIELDS 4/5

So in general the integral depends on the path taken. Notice that answer (1) is the
same as answer (2) when n = 1, and that answer (3) is the limiting value of answer
(2) as n →∞.

Q2: Repeat part (2) using the Force F = xy 2ı̂ + x2y ̂.

A2: For the path y = xn we find that dy = nxn−1dx , so

∫ (1,1)

(0,0)

(y 2xdx + yx2dy) =

∫ x=1

x=0

(x2n+1dx + nxn−1.x2.xndx) (4.14)

=

∫ x=1

x=0

(x2n+1dx + nx2n+1dx) (4.15)

=
1

2n + 2
+

n

2n + 2
(4.16)

=
1

2
independent of n (4.17)

4.1.2 Line integrals in Conservative fields

In example #2, the line integral has the same value for the whole range of paths. We
now prove that it is wholly independant of path.

Consider the function g(x, y) = x2y 2/2. Using the definition of the perfect or total
differential

dg =
∂g

∂x
dx +

∂g

∂y
dy and in this case dg = y 2xdx + yx2dy . (4.18)

So our line is actually

∫ B

A

(y 2xdx + yx2dy) =

∫ B

A

dg = gB − gA . (4.19)

This depends solely on the value of g at the start and end points, and not at all on the
path used to get from A to B.

Such a vector field is called conservative.
If F is a conservative field, the line integral

∫ B
A F · dr is independent of path.

An immediate corollary is that

If F is a convervative field, the line integral around a closed path
∮
F · dr is zero.

There will be more to say on this when we consider the gradient operator.
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♣ Example

Q: In an eletric field E, the potential function is φ = −
∫
E · dr. State whether or not

E is a conservative field.

A: We know that the the potential difference around any loop is zero. This must mean
that E is conservative.

4.1.3 A note on line integrals defined in terms of arc length

(You might wish to return to this later when you are more confident with the rest of
the material.)

Line integrals are often defined in terms of scalar arc length. They don’t appear to
involve vectors, but actually they are another form of type 2 defined earlier.

The integrals usually appears as follows

I =

∫

L

F (x, y , z)ds (4.20)

and most often the path L is along a curve defined parametrically as x = x(p), y =

y(p), z = z(p) where p is some parameter. Convert the function to F (p), writing

I =

∫ pend

pstart

F (p)
ds

dp
dp (4.21)

where

ds

dp
=

[(
dx

dp

)2

+

(
dy

dp

)2

+

(
dz

dp

)2
]1/2

. (4.22)

Note that the parameter p could be arc-length s itself, in which case ds/dp = 1 of
course! Another possibility is that the parameter p is x — that is we are told y = y(x)

and z = z(x). Then

I =

∫ xend

xstart

F (x)

[
1 +

(
dy

dx

)2

+

(
dz

dx

)2
]1/2

dx . (4.23)

4.2 Surface integrals
The surface S over which the integral is to be evaluated is now divided into infinitesimal
vector elements of area dS, the direction of the vector dS representing the direction
of the surface normal and its magnitude representing the area of the element.

Again there are three possibilities:
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•
∫
S UdS — scalar field U; vector integral.

•
∫
S a · dS — vector field a; scalar integral.

•
∫
S a× dS — vector field a; vector integral.

Physical examples of surface integrals with vectors often involve the idea of flux of
a vector field through a surface,

∫
S a · dS. For example the mass of fluid crossing a

surface S in time dt is dM = ρv · dSdt where ρ(r) is the fluid density and v(r) is the
fluid velocity. The total mass flux can be expressed as a surface integral:

ΦM =

∫

S

ρ(r)v(r) · dS (4.24)

Again, note that this expression is coordinate free. Our first example below using
Cartesians, but — as with line integrals — symmetry may lead us to a different more
natural coordinate system.

♣ Example

Q: Evaluate
∫
F · dS over the x = 1 side

of the cube shown in the figure when F =

y ı̂ + z ̂ + x k̂.
A: dS is perpendicular to the surface. Its ±
direction actually depends on the nature of
the problem. More often than not, the sur-
face will enclose a volume, and the surface
direction is taken as everywhere emanating
from the interior.

1

1

x

z

y

1

dS

dS = dy dz i
Hence for the face of the cube at x = 1

dS = dydz ı̂ (4.25)

and
∫
F · dS =

∫ 1

z=0

∫ 1

y=0

ydydz =
1

2
y 2
∣∣1

0
z |10 =

1

2
. (4.26)

4.3 Volume integrals
The definition of the volume integral is again taken as the limit of a sum of products
as the size of the volume element tends to zero. One obvious difference though is that
the element of volume is always a scalar. The possibilities are:
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•
∫
V U(r)dV — scalar field; scalar integral.

•
∫
V adV — vector field; vector integral.

You have covered the scalar integral in the 1st year course, and the vector integral can
be handled by taking the components of a and computing separate scalar integrals.
That is, in Cartesian components,∫

V

adV = ı̂
∫

V

a1dV + ̂
∫

V

a2dV + k̂

∫

V

a3dV . (4.27)

We shall return to think further about volume integrals after considering changing
variables and curvilinear coordinates.

4.4 Changing variables: curvilinear coordinates
So far we have considered line, surface and volume integrals in Cartesian coordinates.
But often the symmetry of the problem strongly hints that we should use another
coordinate system. It is

• likely to be plane, cylindrical, or spherical polars,

• but can be something more exotic

Let us think about the problem quite generally first, before specializing to the polar
family. The general name for any general “u, v , w ” coordinate system is a curvilinear
coordinate system.

Let us start with line integrals, as they raise all the issues but provide the simplest case.

4.4.1 What are the issues?

When you perform a line integral in Cartesian coordinates, we write

r = x ı̂ + y ̂ + z k̂ and ⇒ dr = dx ı̂ + dy ̂ + dz k̂ . (4.28)

It is convenient to use changes (dx, dy , dz) along the basis vectors (̂ı, ̂, k̂) because
these are independent of each other. In Cartesians, we can be sure that length scales
are properly handled because, as we saw in Lecture 3,

|dr| = ds =
√
dx2 + dy 2 + dz2 . (4.29)

To perform the line integral, we are interested in obtaining an expression for dr as a
sum of terms involving duû, dv v̂, and dw ŵ, but the very first thing to stress is that

r 6= uû+ v v̂ + w ŵ

dr 6= duû+ dv v̂ + dw ŵ

|dr| = ds 6=
√
du2 + dv 2 + dw 2



THESE ARE BAD (4.30)
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The key thing is that the length scales have been lost, and must be restored.

4.4.2 Finding the length scales

As with almost all things in multivariate calculus, everything of importance appears with
just two variables, and so let us think about a line integral in the plane, and transform
from (x, y) to (u, v) coordinates.

lines of constant x

lin
e

s
 o

f c
o

n
s
ta

n
t y

yy

x x

lines of constant v
lines of const u

Figure 4.3: Lines of constant u and v appear as curves on the xy -plane. How do we express dr?

We are told x = x(u, v) and y = y(u, v), so that

dx =
∂x

∂u
du +

∂x

∂v
dv and dy =

∂y

∂u
du +

∂y

∂v
dv . (4.31)

Hence, as r = x(u, v )̂ı + y(u, v )̂, we can write

dr =

(
∂x

∂u
du +

∂x

∂v
dv

)
ı̂ +

(
∂y

∂u
du +

∂y

∂v
dv

)
̂ (4.32)

=

(
∂x

∂u
ı̂ +

∂y

∂u
̂
)
du +

(
∂x

∂v
ı̂ +

∂y

∂v
̂
)
dv (4.33)

= (hu û) du + (hv v̂) dv (4.34)

So, at a stroke, we have found expressions for û and v̂, and have found the length
scales hu and hv . These scales are called metric coefficients. They are the factors
that turn the “d-whatevers” into proper lengths.

Because û is a unit vector, if we square both sides of the expression hu û = (∂x/∂ûı+

∂y/∂u ̂) we find that

hu =

[(
∂x

∂u

)2

+

(
∂y

∂u

)2
]1/2

(4.35)
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Because we can also write

dr =
∂r

∂u
du +

∂r

∂v
dv (4.36)

we also have that

huû =
∂r

∂u
and hu =

∣∣∣∣
∂r

∂u

∣∣∣∣ (4.37)

and similarly for v .

4.4.3 Now we can tie this in with our knowledge of tangents!

In Lecture 3 we discovered that dr/dp was a (non-unit) tangent to the curve r(p).
Now suppose we wanted to write down the tangent to the v =constant curve. We
know that r = x(u, v )̂ı + y(u, v )̂ and so

∂r

∂u
=
∂x

∂u
ı̂ +

∂y

∂u
̂ . (4.38)

This is like dr/dp but is partial because there are two parameters and v is being held
constant.

Clearly u is not arclength and ∂r/∂u will not
be a unit tangent, rather

∂r

∂u
= huû (4.39)

and similarly for v̂.
This is exactly what we derived before.

z

y

x

lines of constant v
lin

e
s o

f co
n
sta

n
t u

(
∂r

∂u

)
du

(
∂r

∂v

)
dv

0.5

These ideas extend to n-vectors without need for further proof, and so:
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Summary: If

r = x(u, v , w )̂ı + y(u, v , w )̂ + z(u, v , w)k̂ (4.40)

then

dr = huduû + hvdv v̂ + hwdw ŵ (4.41)

where

hu =

∣∣∣∣
∂r

∂u

∣∣∣∣ hv =

∣∣∣∣
∂r

∂v

∣∣∣∣ hw =

∣∣∣∣
∂r

∂w

∣∣∣∣ (4.42)

and, for example,

∣∣∣∣
∂r

∂u

∣∣∣∣ =

[(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2
]1/2

(4.43)

4.4.4 Surface integrals and curvilinear coordinates

In the earlier surface integral example using a cube, to find the surface element with
normal along ı̂ we took a vector product of elements in the two orthogonal directions:

dS = (dy ̂)× (dz k̂) = dydz ı̂ . (4.44)

The question now is can we use the same in curvilinear coordinates? To obtain a
surface with normal along ŵ, would we take vector products like (duû)× (dv v̂)? You
can probably guess that this is nearly correct, but that length scales will trouble us ...

Looking at the elemental surface patch in
u, v , w coordinates, we see that the surface
element is planar (but not necessarily in the
xy -plane).
So the surface element is

dS =
∂r

∂u
du ×

∂r

∂v
dv (4.45)

= huduû× hvdv v̂ (4.46)

Note that the tile is a parallelogram, not a
rectangle.

z

y

x

lines of constant v
lin

e
s o

f co
n
sta

n
t u

(
∂r

∂u

)
du

(
∂r

∂v

)
dv

To summarize



4/12 LECTURE 4. LINE, SURFACE AND VOLUME INTEGRALS. CURVILINEAR COORDINATES.

The general 3D result for a surface patch is

dS = huhvdudv(û× v̂) (4.47)

For an orthogonal curvilinear coord system û× v̂ = ŵ, and

dS = huhvdudv ŵ (4.48)

A note about Jacobians

Interestingly, if we deal with the change between variables (x, y) and (u, v) in the plane,
we arrive at the familiar Jacobian.

dS = dxdy (̂ı× ̂) = dxdy k̂ (4.49)

=

(
∂x

∂u
ı̂ +

∂y

∂u
̂
)
×
(
∂x

∂v
ı̂ +

∂y

∂v
̂
)
dudv (4.50)

=

(
∂x

∂u

∂y

∂v
−
∂y

∂u

∂x

∂v

)
dudv k̂ =

∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ dudv k̂ (4.51)

(But note that for non-vector integration in two variables, vector signs are unimportant
and, as you’ll remember, you take the modulus of the Jacobian as the area scale factor.)

4.4.5 Curvilinear co-ordinates and volume integrals

If we transform to curvilinear coordinates u, v , w from x, y , z , what is the size of the
volume element?

(
∂r

∂u

)
du

(
∂r

∂v

)
dv

(
∂r

∂w

)
dw

Figure 4.4:
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It is the volume of a parallelopiped, which in an earlier lecture we saw was given by the
scalar triple product. Hence

dV =

(
∂r

∂u
du ×

∂r

∂v
dv

)
·
∂r

∂w
dw = huhvhw du dv dw (û× v̂) · ŵ (4.52)

Recalling that

∂r

∂u
=

(
∂x

∂u
ı̂ +

∂y

∂u
̂ +

∂z

∂u
k̂

)
(4.53)

the scalar triple product is just the Jacobian:
∣∣∣∣∣∣

∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

∣∣∣∣∣∣
(4.54)

To summarize
General 3D results:
Either

dV =

∣∣∣∣
∂(x, y , z)

∂(u, v , w)

∣∣∣∣ du dv dw (4.55)

or

dV = huhvhw du dv dw (û× v̂) · ŵ (4.56)

Short cut if you are sure the system is orthogonal

dV = huhvhw du dv dw (4.57)
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4.5 The Polars
Some curvilinear coordinate systems are
orthogonal, meaning that û, v̂ and ŵ are
mutually perpendicular. The family of
polar coordinates are three such.
Below, we apply the general theory to
these in turn.

4.6 Plane polars: an orthogonal curvi coord system
Starting from the position vector, we can now work out the orthogonal vectors and
metric coefficients

r = x ı̂ + y ̂ = r cos θ̂ı + r sin θ̂ (4.58)

hr r̂ =
∂r

∂r
= (cos θ̂ı + sin θ̂)

hθθ̂ =
∂r

∂θ
= (−r sin θ̂ı + r cos θ̂)

⇒ hr =

∣∣∣∣
∂r

∂r

∣∣∣∣ = |cos θ̂ı + sin θ̂| = 1

hθ =

∣∣∣∣
∂r

∂θ

∣∣∣∣ = |−r sin θ̂ı + r cos θ̂| = r

r̂ = (cos θ̂ı + sin θ̂)
θ̂ = (− sin θ̂ı + cos θ̂)

⇒ dr = hrdr r̂ + hθdθθ̂ = dr r̂ + rdθθ̂.

and dS = hrhθdrdθ(̂r × θ̂) = rdrdθk̂ .

dS = rdrdθk̂
θ̂

r̂

r θ

dr

rdθ
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♣ Example

NB! This is not a very sensible example to turn into plane polars, but as we’ve done it
Cartesians we know what the answer is.

Q:
Using plane polars, repeat path 3 of the ear-
lier line integral example

∫
F · dr where the

a force F = x2y ı̂+ xy 2̂ acts on a body at it
moves between (0, 0) and (1, 0) then from
(1, 0) to (1, 1).

0,0 0,1

1,1

1

2 3

A: First change the functions and the vectors from Cartesian to plane polars:

F = r 3 cos θ sin θ(cos θ̂ı + sin θ̂) = r 3 cos θ sin θr̂ (4.59)
dr = dr r̂ + rdθθ̂

⇒ F · dr = r 3 cos θ sin θdr

Must break the path into two. Along the first part of the path, the integrand is zero
as sin θ = 0. Along the second part, r = 1/ cos θ, and hence

I =

∫ r=1,θ=0

r=0,θ=0

r 3 cos θ sin θdr +

∫ r=
√

2,θ=π/4

r=1,θ=0

r 3 cos θ sin θdr (4.60)

= 0 +

∫ θ=π/4

θ=0

1

cos3 θ
cos θ sin θ

sin θ

cos2 θ
dθ

=

∫ θ=π/4

θ=0

sin2 θ

cos4 θ
dθ [subst t = tan θ] =

∫ 1

0

t2dt = 1/3 .
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4.7 Cylindrical polar co-ordinates
This adds the cartesian co-ordinate z to plane polar co-ordinates in order to specify
position in three dimensions. NOTE: The co-ordinate r is measured perpendicularly
from the z axis, and this can cause confusion with the position vector. To avoid this
we will call the position vector R.

x

y

z

ẑ
φ̂

r̂
P

R

ı̂
̂

k̂

r

φ

r

y

z

x

Lines of 

constant φ

Lines of

constant r

Lines of 

constant z

(a) Quantities (b) Iso lines

We work through the equations in brief first,

x = r cosφ , y = r sinφ , z = z (4.61)
⇒ R = r cos φ̂ı + r sin φ̂ + z k̂

hr r̂ =
∂r

∂r
= (cos φ̂ı + sin φ̂)

hφφ̂ =
∂r

∂φ
= (−r sin φ̂ı + r cos φ̂)

hz ẑ =
∂r

∂z
= k̂

⇒ hr = 1 and r̂ = cos φ̂ı + sin φ̂
hφ = r and φ̂ = − sin φ̂ı + cos φ̂
hz = 1 and ẑ = k̂

⇒ dR = dr r̂ + rdφ φ̂+ dz ẑ

and dSr = hφhzdφdz(φ̂× ẑ) = r dφ dz r̂

dSφ = hzhrdzdr(ẑ× r̂) = dz dr φ̂

dSz = hrhφdrdφ(̂r × φ̂) = rdrdφẑ

dV = r dr dφ dz
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4.7.1 Detail: Surface integrals in cylindrical polars

Recall that in Cartesians for a surface element with normal along x or ı̂ we dSx =

dydz ̂× k̂ = dydz ı̂.

We now know that we must insert scale parameters in curvilinear coordinates.

In cylindrical polars, the two most used surface area elements are given by:

For surfaces of constant r :

dSr = hφhzdφdz(φ̂× ẑ) = rdφdz r̂ . (4.62)

For surfaces of constant z :

dSz = hrhφdrdφ(̂r × φ̂) = rdrdφẑ (4.63)

If your cylinder is cut open, you may also need the third element dSφ for surfaces of
constant φ

dSφ = hzhrdzdr(ẑ× r̂) = dzdr φ̂ . (4.64)

x

y

z

dz ẑ

dz ẑ

dr r̂

dr r̂rdφφ̂

rdφφ̂

dSz = rdrdφẑ

dSr = rdφdz r̂

dSφ = drdz φ̂
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4.7.2 Detail: Volume integrals in cylindrical polars

In Cartesian coordinates a volume element is given by dV = dxdydz . Recall that the
volume of a parallelopiped is given by the scalar triple product of the vectors which
define it (see section ??). Thus the formula above can be derived (even though it is
“obvious”) as: dV = dx ı̂ · (dy ̂× dz k̂) = dxdydz since the basis set is orthonormal.

In cylindrical polars a volume element is given by (see Fig. 4.5b):

dV = hrdr r̂ · (hφdφφ̂× hzdz ẑ) = rdr dφdz . (4.65)

x

y

z

dV = dxdydzdx ı̂

dy ̂

dz k̂

x

y

z

φ

dφ
rdφ

dz ẑ

dr r̂

rdφφ̂

dV = rdrdφdz

(a) (b)

Figure 4.5: Volume elements dV in (a) Cartesian coordinates; (b) Cylindrical polar coordinates

Note also that this volume, because it is a scalar triple product, can be written as a
determinant:

dV =

∣∣∣∣∣∣

r̂dr

φ̂rdφ

ẑdz

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

(∂R/∂r)dr

(∂R/∂φ)dφ

(∂R/∂z)dz

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂φ

∂y
∂φ

∂z
∂φ

∂x
∂z

∂y
∂z

∂z
∂z

∣∣∣∣∣∣∣
drdφdz

where the equality on the right-hand side follows from the definitions of

r̂ = ∂R/∂r =
∂x

∂r
ı̂ +

∂y

∂r
̂ +

∂z

∂r
k̂ (4.66)

etc. Remember we are denoting the position vector by R.
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♣ Example: line integral in cylindrical coordinates

Q

Evaluate
∮
C a · dR , where a = x3̂ − y 3ı̂ + x2y k̂ and C is the circle of radius r in the

z = 0 plane, centred on the origin.

A

In this case our cylindrical coordinates effectively reduce to plane polars since the path
of integration is a circle in the z = 0 plane, but let’s persist with the full set of
coordinates anyway; the k̂ component of a will play no role (it is normal to the path of
integration and therefore disappears as seen below).

On the circle of interest

a = r 3(− sin3 φ̂ı + cos3 φ̂ + cos2 φ sinφk̂) (4.67)

In general, dR = hrdr r̂+hφdφφ̂+hzdz ẑ. But on the chosen path dr = 0 and dz = 0.
Hence

dR = hφdφφ̂ = rdφφ̂ = rdφ(− sin φ̂ı + cos φ̂) (4.68)

so that
∮

C

a · dR =

∫ 2π

0

r 4(sin4 φ+ cos4 φ)dφ =
3π

2
r 4 (4.69)

since
∫ 2π

0

sin4 φdφ =

∫ 2π

0

cos4 φdφ =
3π

4
(4.70)

From above

x

x
y

y

z

rφ
φ

dφ

dR = rdφφ̂

dR = rdφφ̂
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4.8 Spherical polar co-ordinates
Much of the development for spherical polars is similar to that for cylindrical polars. As
shown below, a point in space P having cartesian coordinates x, y , z can be expressed
in terms of spherical polar coordinates, r, θ, φ as follows:

r = x ı̂ + y ̂ + z k̂ = r sin θ cos φ̂ı + r sin θ sin φ̂ + r cos θk̂ (4.71)

x

y

z

ı̂
̂

k̂ θ̂
φ̂

r̂

P

r

φ

θ

x

y

z

Lines of 
constant

Lines of
constant r

Lines of 
constant

φ

θ

(longitude)

(latitude)

We work through the equations in brief first:

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ (4.72)
r = r sin θ cos φ̂ı + r sin θ sin φ̂ + r cos θk̂

⇒ hr r̂ = ∂r/∂r =

hθθ̂ = ∂r/∂θ =

hφφ̂ = ∂r/∂φ =

⇒ hr = 1 , hθ = r, hφ = r sin θ

⇒ r̂ = sin θ cos φ̂ı + sin θ sin φ̂ + cos θk̂

θ̂ = cos θ cos φ̂ı + cos θ sin φ̂− sin θk̂

φ̂ = − sin θ̂ı + cosφ ̂
⇒ dr = dr r̂ + rdθ θ̂ + r sin θ dφ φ̂

dSr = hθhφdθdφ(θ̂ × φ̂) = r 2 sin θ dθ dφ r̂ on spherical surface

dSθ = hφhrdφdr(φ̂× r̂) = r sin θ dφdr θ̂ on conical surface

dSφ = hrhθdrdθ(̂r × θ̂) = r drdθφ̂ on planar hemisphere surface

dV = r 2 sin θ dr dθ dφ
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4.8.1 Detail: Surface integrals in spherical polars

The most useful surface element in spherical polars is that tangent to surfaces of
constant r (see Fig. 4.6). This surface element dSr is given by

dSr = hθdθθ̂ × hφdφφ̂ = r 2 sin θdθdφr̂ (4.73)

x

y

z

rdθθ̂

r sin θdφφ̂

dSr = r
2 sin θdθdφr̂

Figure 4.6: Surface element dS in spherical polar coordinates

♣ Example: surface integral in spherical polars

Q Evaluate
∫
S a · dS, where a = z3k̂ and S is the sphere of radius A centred on the

origin.

A On the surface of the sphere:

a = A3cos3θk̂ , dS = A2 sin θ dθ dφr̂ (4.74)

Hence
∫

S

a · dS =

∫ 2π

φ=0

∫ π

θ=0

A3cos3θ A2 sin θ [k̂ · r̂] dθdφ (4.75)

↓

= A5

∫ 2π

0

dφ

∫ π

0

cos3θ sin θ[cos θ] dθ

= 2πA5 1

5

[
− cos5 θ

]π
0

=
4πA5

5

4.8.2 Detail: Volume integrals in spherical polars

In spherical polars a volume element is given by (see Fig. 4.7):

dV = hrdr r̂ · (hθdθθ̂ × hφdφφ̂) = r 2 sin θdrdθdφ . (4.76)
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x

y

z

rdθθ̂

r sin θdφφ̂

dr r̂

dV = r2 sin θdrdθdφ

dφ

dφ

dθ

θ

φ

r

r sin θdφ

r sin θ

Figure 4.7: Volume element dV in spherical polar coordinates

It can also be written of course using the Jacobian, but this is left as an exercise for
the reader.

Revised January 23, 2018


